Publications by authors named "Wai-Ming Kwok"

6-Amino-5-nitropyridin-2-ol (Z), a nitroaromatic compound and a base for Hachimoji nucleic acids, holds significant potential in expanding the genetic alphabet, as well as in synthetic biology and biotechnology. Despite its promising applications, the spectral characterization and photoinduced properties of Z have remained largely unexplored until now. This study presents a comprehensive investigation into its excited state dynamics in various solvents, utilizing state-of-the-art ultrafast broadband time-resolved fluorescence and transient absorption spectroscopy, complemented by computational methods.

View Article and Find Full Text PDF

1-Methylcytosine (1mCyt) is the base for nucleoside 1-methylpseudodeoxycytidine of Hachimoji nucleic acids and a frequently used model compound for theoretical studies on excited states of cytosine nucleosides. However, there is little experimental characterization of spectra and photo-dynamic properties of 1mCyt. Herein, we report a comprehensive investigation into excited state dynamics and effects of solvents on fluorescence dynamics of 1mCyt in both water and acetonitrile.

View Article and Find Full Text PDF

Isocytosine, having important applications in antivirus and drug development, is among the building blocks of Hachimoji nucleic acids. In this report, we present an investigation of the excited state dynamics of isocytosine in both protic and aprotic solvents, which was conducted by a combination of methods including steady-state spectroscopy, femtosecond broadband time-resolved fluorescence, and transient absorption. These methods were coupled with density functional and time-dependent density functional theory calculations.

View Article and Find Full Text PDF

Guanine quadruplexes (GQs), important for genome stability and biotechnology application, can form from both DNA and RNA. However, unlike the study of DNA GQs, little research has been conducted on excited states of GQs from RNA, which due to the ribose 2'-hydroxy group have structures distinct from their DNA counterparts. Combining ultrafast broadband time-resolved fluorescence and transient absorption measurements, we report the first direct probe of excitation dynamics for a bimolecular GQ from human telomeric repeat-containing RNA taking the typical highly compacted parallel folding with a propeller-like loop structure.

View Article and Find Full Text PDF

In contrast to the immense amount of research on electronically excited DNA, surprisingly little has been done about the excited states of RNA. Herein, we demonstrate an ultrafast broadband time-resolved fluorescence and fluorescence anisotropy study to probe directly the intrinsic fluorescence and overall dynamics of the fluorescence from a homopolymeric adenine·uracil RNA duplex adopting the A-form structure. The results unveiled complex deactivation through distinctive multichannels mediated by states of varied energy, a character of charge transfer, and a lifetime from sub-picosecond to nanoseconds.

View Article and Find Full Text PDF

Adenosine (Ado) possesses ultrafast nonradiative dynamics accounting for its remarkably high photostability. The deactivation dynamics of Ado after protonation in an aqueous solution remains an elusive issue. Herein we report an investigation of the excited state dynamics of protonated Ado (AdoH) performed using ultrafast time-resolved fluorescence spectroscopy combined with density functional theoretical calculation.

View Article and Find Full Text PDF

Understanding the factors affecting the intersystem-crossing (ISC) rate constant () of transition-metal complexes is crucial to material design with tailored photophysical properties. Most of the works on ISC to date focused on the influence by the chromophoric ligand and the understanding of the ISC efficiency were mainly drawn from the steady-state fluorescence to phosphorescence intensity ratio and ground-state calculations, with only a few high-level calculations on that take excited-state structural change and solvent reorganization into account for quantitative comparisons with the experimental data. In this work, a series of [Pt(thpy)X)] complexes were prepared [Hthpy = 2-(2'-thienyl)pyridine, where X = auxiliary ligands] and characterized by both steady-state and time-resolved luminescence spectroscopies.

View Article and Find Full Text PDF

4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT).

View Article and Find Full Text PDF

Guanine(G)-rich human telomeric (HT) DNA repeats, crucial to maintenance of genome stability, readily form G-quadruplexes (GQs) with various folding topologies. Research on excitation dynamics of HT-GQs is, however, scarce. Herein, we report a femtosecond time-resolved fluorescence coupled with transient absorption investigation on HT-GQ with the basket-type structure in Na solution.

View Article and Find Full Text PDF

A cyclen backbone was utilized to study the effect of backbone rigidity on Eu(iii) luminescence sensitization using a 1,2-HOPO derivative and 2-thenoyltrifluoroacetonate (TTA) as chromophores. The restriction of molecular movement of brought about by the increased rigidity provided a tightly packed coordination environment for the octadentate Eu(iii) center which resulted in the highest overall quantum yield (30.2%) and sensitization efficiency (64.

View Article and Find Full Text PDF

Quinoline core has been shown to possess a promising role in the development of anticancer agents. However, the correlation between its broad spectrum of bioactivity and the underlying mechanism of actions is poorly understood. The present study, with the use of bioinformatics approaches, reported a series of designed molecules which integrated quinoline core and sulfonyl moiety, with the objective of evaluating the substituent and linker effects on anticancer activities and associated mechanistic targets.

View Article and Find Full Text PDF

i-Motifs are tetraplex DNAs known to be stable at acidic pH. The structure of i-motifs is important in DNA nanotechnology; i-motif-forming sequences with consecutive cytosine (C) molecules are abundant throughout the human genome. There is, however, little information on the structure of C-rich DNAs under physiologically relevant neutral conditions.

View Article and Find Full Text PDF

Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs.

View Article and Find Full Text PDF

As a case study of the interplay and the consequence of the interplay between intramolecular charge transfer (ICT) and intermolecular hydrogen (H)-bonding, a combined femtosecond time-resolved fluorescence (fs-TRF) and density functional theoretical (DFT) and time-dependent DFT (TDDFT) study has been conducted on methyl dimethylaminobenzoate (MDMABA) largely in a water solvent. Direct observation of the broadband spectra, anisotropy, and kinetic decays of fs-TRF from photo-excited MDMABA revealed a rapid ICT reaction occurring with a time constant of ∼0.7 ps from an initial locally excited (LE) state identified to have the Lππ* character; this produced a weakly emissive ICT state featuring radiative rate constant decreased by more than two orders of magnitude.

View Article and Find Full Text PDF

Hydrogen generation from water using noble metal-free photocatalysts presents a promising platform for renewable and sustainable energy. Copper-based chalcogenides of earth-abundant elements, especially CuZnSnS (CZTS), have recently arisen as a low-cost and environment-friendly material for photovoltaics and photocatalysis. Herein, we report a new heterostructure consisting of CZTS nanoparticles anchored onto a MoS-reduced graphene oxide (rGO) hybrid.

View Article and Find Full Text PDF

Palladium(ii) complexes supported by tetradentate [N^C^C^N] and [O^N^C^N] ligand systems display sky blue to red phosphorescence with emission quantum yields and emission lifetimes up to 0.64 and 272 μs, respectively. Femtosecond time-resolved fluorescence (fs-TRF) measurements on these Pd(ii) complexes reveal a fast intersystem crossing from singlet to triplet manifolds with time constants of 0.

View Article and Find Full Text PDF

Luminescent metal complexes having open coordination sites hold promise in the design of sensory materials and photocatalysts. As a prototype example, [Au2 (dcpm)2)](2+) (dcpm = bis(dicyclohexylphosphanyl) is known for its intriguing environmental sensitive photoluminescence. By integrating a range of complementary ultrafast time-resolved spectroscopy to interrogate the excited state dynamics, this study uncovers that the events occurring in extremely rapid timescales and which are modulated strongly by environmental conditions play a pivotal role in the luminescence behavior and photochemical outcomes.

View Article and Find Full Text PDF

The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba--undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.

View Article and Find Full Text PDF

Cytosine (Cyt) among all the nucleic acid bases features the most complex and least understood nonradiative deactivation, a process that is crucially important for its photostability. Herein, the excited state dynamics of Cyt and a series of its N1- and C5-derivatives, including the full set of Cyt nucleosides and nucleotides in DNA and RNA and the nucleosides of 5-methyl cytosine, 5-methylcytidine and 2'-deoxy-5-methylcytidine, have been investigated in water and in methanol employing femtosecond broadband time-resolved fluorescence coupled with fs transient absorption spectroscopy. The results reveal remarkable state-specific effects of the substitution and solvent in tuning distinctively the timescales and pathways of the nonradiative decays.

View Article and Find Full Text PDF

Platinum(ii) bis(N-(4-ethynylphenyl)carbazole)bipyridine fullerene complexes, (Cbz)2-Pt(bpy)-C60 and ((t)BuCbz)2-Pt(bpy)-C60, were synthesized. Their photophysical properties were studied by electronic absorption and emission spectroscopy and the origin of the transitions was supported by computational studies. The electrochemical properties were also studied and the free energies for charge-separation and charge-recombination processes were evaluated.

View Article and Find Full Text PDF

Luminescent metallo-intercalators are potent biosensors of nucleic acid structure and anticancer agents targeting DNAs. There are few examples of luminescent metallo-intercalators which can simultaneously act as emission probes of nucleic acid structure and display promising anticancer activities. Herein, we describe a luminescent platinum(II) complex, [Pt(C^N^N)(C≡NtBu)]ClO4 (1 a, HC^N^N= 6-phenyl-2,2'-bipyridyl), that intercalates between the nucleobases of nucleic acids, accompanied by an increase in emission intensity and/or a significant change in the maximum emission wavelength.

View Article and Find Full Text PDF

Donor-chromophore-acceptor triads, (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, along with their model compound, (Ph)2-Pt(bpy)-C60, have been synthesized and characterized; their photophysical and electrochemical properties have been studied, and the origin of the absorption and emission properties has been supported by computational studies. The photoinduced electron transfer reactions have been investigated using the femtosecond and nanosecond transient absorption spectroscopy. In dichloromethane, (Ph)2-Pt(bpy)-C60 shows ultrafast triplet-triplet energy transfer from the (3)MLCT/LLCT excited state within 4 ps to give the (3)C60* state, while in (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, charge-separated state forms within 400 fs from the (3)MLCT/LLCT excited state with efficiency of over 0.

View Article and Find Full Text PDF

A theoretical investigation on the luminescence efficiency of a series of d(8) transition-metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M-salen](n) complexes (salen = N,N'-bis(salicylidene)ethylenediamine; M = Pt, Pd (n = 0); Au (n = +1)) in acetonitrile solutions at room temperature: [Pt-salen] is phosphorescent and [Au-salen](+) is fluorescent, but [Pd-salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron-withdrawing groups at the 4-position of the Schiff base ligand should widen the (3)MLCT-(3)MC gap (MLCT = metal-to-ligand charge transfer and MC = metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding Pd(II) Schiff base complex.

View Article and Find Full Text PDF

Real-time tracking of fast axonal transport of acidic vesicles in live adult mouse dorsal root ganglion (DRG) and cortical neurons in brain slices was visualized by the use of binuclear cycloplatinated complexes, {[Pt(L1)]2(μ-dppm)}(2+) (1) and {[Pt(L2)]2(μ-dppm)}(2+) (2), as lysosome-specific two-photon imaging probes.

View Article and Find Full Text PDF

We report a simple but highly cooperative ensemble with CdS and MoS2 nanocrystals dispersed on graphene sheets: it is demonstrated that CdS nanocrystals can capture light energy and facilitate excited electron transfer to MoS2 for catalytic hydrogen production via the 2-D graphene which plays a key role as an efficient electron mediator.

View Article and Find Full Text PDF