Publications by authors named "Wai-Ho Tang"

Article Synopsis
  • Kawasaki disease (KD) is an acute illness in young children that leads to serious heart complications, primarily through platelet hyperactivity and an abnormal immune response.
  • Researchers identified a feedback loop involving platelets and monocytes, where their interaction activates inflammatory processes that worsen KD symptoms.
  • Targeting specific proteins and cytokines in this feedback loop could offer new diagnostic and treatment strategies for managing the vascular damage caused by KD.
View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive.

View Article and Find Full Text PDF

Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation.

View Article and Find Full Text PDF

Background: Kawasaki disease (KD) is an acute vasculitis that may result in permanent coronary artery damage with unknown etiology. Endothelial cell (EC) dysfunction and platelet hyperactivity are the hallmarks of KD. Platelets are involved in the development of endothelial dysfunction.

View Article and Find Full Text PDF

Platelets have emerged as key inflammatory cells implicated in the pathology of sepsis, but their contributions to rapid clinical deterioration and dysregulated inflammation have not been defined. Here, we show that the incidence of thrombocytopathy and inflammatory cytokine release was significantly increased in patients with severe sepsis. Platelet proteomic analysis revealed significant upregulation of gasdermin D (GSDMD).

View Article and Find Full Text PDF

Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions.

View Article and Find Full Text PDF

TRPM2 (transient receptor potential melastatin-2), a Ca permeable, non-selective cation channel, is highly expressed in cancers and regulates tumor cell migration, invasion, and proliferation. However, no study has yet demonstrated the association of TRPM2 with the prognosis of cancer patients or tumor immune infiltration, and the possibility and the clinical basis of TRPM2 as a prognostic marker in cancers are yet unknown. In the current study, we first explored the correlation between the mRNA level of and the prognosis of patients with different cancers across public databases.

View Article and Find Full Text PDF

Background: Aberrant expression of circular RNA contributes to human diseases. Circular RNAs regulate gene expression by sequestering specific microRNAs. In this study, we investigated whether circMAP3K5 (circular mitogen-activated protein kinase 5) could act as a competing endogenous microRNA-22-3p (miR-22-3p) sponge and regulate neointimal hyperplasia.

View Article and Find Full Text PDF

Platelet hyperactivity is the hallmark of diabetes, and platelet activation plays a crucial role in diabetic vascular complications. Recent studies have shown that upon activation, platelet-derived miRNAs are incorporated into vascular smooth muscle cells (VSMCs), regulating the phenotypic switch of VSMC. Under diabetes, miRNA deficiency in platelets fails to regulate the VSMC phenotypic switch.

View Article and Find Full Text PDF

Rationale: Kawasaki disease (KD) is an acute vasculitis of early childhood that can result in permanent coronary artery structural damage. The cause for this arterial vulnerability in up to 15% of patients with KD is unknown. Vascular smooth muscle cell dedifferentiation play a key role in the pathophysiology of medial damage and aneurysm formation, recognized arterial pathology in KD.

View Article and Find Full Text PDF

Previous studies have demonstrated that inhibition of canonical Wnt signaling promotes zebrafish heart regeneration and that treatment of injured heart tissue with the Wnt activator 6-bromo-indirubin-3-oxime (BIO) can impede cardiomyocyte proliferation. However, the mechanism by which Wnt signaling regulates downstream gene expression following heart injury remains unknown. In this study, we have demonstrated that inhibition of injury-induced myocardial and signaling impedes heart repair following apex resection.

View Article and Find Full Text PDF

Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling.

View Article and Find Full Text PDF

Exosomes are nano-sized biovesicles released into surrounding body fluids upon fusion of multivesicular bodies and the plasma membrane. They were shown to carry cell-specific cargos of proteins, lipids, and genetic materials, and can be selectively taken up by neighboring or distant cells far from their release, reprogramming the recipient cells upon their bioactive compounds. Therefore, the regulated formation of exosomes, specific makeup of their cargo, cell-targeting specificity are of immense biological interest considering extremely high potential of exosomes as non-invasive diagnostic biomarkers, as well as therapeutic nanocarriers.

View Article and Find Full Text PDF

Upon arterial injury, endothelial denudation leads to platelet activation and delivery of multiple agents (e.g., TXA2, PDGF), promoting VSMC dedifferentiation and proliferation (intimal hyperplasia) during injury repair.

View Article and Find Full Text PDF

In this Letter, we investigate spin dynamics of a two-component Bose gas with spin-orbit coupling realized in cold atom experiments. We derive coupled hydrodynamic equations for number and spin densities as well as their associated currents. Specializing to the quasi-one-dimensional situation, we obtain analytic solutions of the spin helix structure and its dynamics in both adiabatic and diabatic regimes.

View Article and Find Full Text PDF

Platelet is an anucleate cell containing abundant messenger RNAs and microRNAs (miRNAs), and their functional roles in hemostasis and inflammation remain elusive. Accumulating evidence has suggested that platelets can actively transfer RNAs to hepatocytes, vascular cells, macrophages, and tumor cells. The incorporated mRNAs are translated into proteins, and miRNAs were found to regulate the gene expression, resulting in the functional change of the recipient cells.

View Article and Find Full Text PDF

Atherosclerotic cardiovascular disease is considered as the leading cause of mortality and morbidity worldwide. Accumulating evidence supports an important role for long noncoding RNA (lncRNA) in the pathogenesis of atherosclerosis. Nevertheless, the role of lncRNA in atherosclerosis-associated vascular dysfunction and the underlying mechanism remain elusive.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a growing international concern. Considerable mortality and morbidity associated with diabetes mellitus arise predominantly from thrombotic cardiovascular events. Oxidative stress-mediated mitochondrial damage contributes significantly to enhanced thrombosis in DM A basal autophagy process has recently been described as playing an important role in normal platelet activation.

View Article and Find Full Text PDF

Exposure to a plethora of environmental challenges commonly triggers pathological type 2 cell-mediated inflammation. Here we report the pathological role of the Wnt antagonist Dickkopf-1 (Dkk-1) upon allergen challenge or non-healing parasitic infection. The increased circulating amounts of Dkk-1 polarized T cells to T helper 2 (Th2) cells, stimulating a marked simultaneous induction of the transcription factors c-Maf and Gata-3, mediated by the kinases p38 MAPK and SGK-1, resulting in Th2 cell cytokine production.

View Article and Find Full Text PDF

An elevated level of von Willebrand factor (VWF) in diabetic patients is associated with increased risk of thrombotic cardiovascular events. The underlying mechanism of how VWF expression is upregulated in diabetes mellitus is poorly understood. We now report that hyperglycemia-induced repression of microRNA-24 (miR-24) increases VWF expression and secretion in diabetes mellitus.

View Article and Find Full Text PDF

Background: Platelet abnormalities are well-recognized complications of diabetes mellitus. Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in diabetes mellitus.

View Article and Find Full Text PDF

Background: Smooth muscle cells (SMCs) are remarkably plastic. Their reversible differentiation is required for growth and wound healing but also contributes to pathologies such as atherosclerosis and restenosis. Although key regulators of the SMC phenotype, including myocardin (MYOCD) and KLF4, have been identified, a unifying epigenetic mechanism that confers reversible SMC differentiation has not been reported.

View Article and Find Full Text PDF

Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity) or promote (hyperactivity) vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C(68)S, V(80)E, E(94)V, A(160)T, V(176)E, and V(217)I) for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions.

View Article and Find Full Text PDF

Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small-vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure. Atypical HUS (aHUS) can result from genetic or autoimmune factors that lead to pathologic complement cascade activation.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.

View Article and Find Full Text PDF