Unlabelled: A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures.
View Article and Find Full Text PDFAn intracranial aneurysm, abnormal swelling of the cerebral artery, may lead to undesirable rates of mortality and morbidity upon rupture. Endovascular treatment involves the deployment of a flow-diverting stent that covers the aneurysm orifice, thereby reducing the blood flow into the aneurysm and mitigating the risk of rupture. In this study, computational fluid dynamics analysis is performed on a bifurcation model to investigate the change in hemodynamics with various side branch diameters.
View Article and Find Full Text PDFPurpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms.
Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations.