The electrophilic substitution reactions of metallabenzynes Os(≡CC(R)═C(CH(3))C(R)═CH)Cl(2)(PPh(3))(2) (R = SiMe(3), H) were studied. These metallabenzynes react with electrophilic reagents, including Br(2), NO(2)BF(4), NOBF(4), HCl/H(2)O(2), and AlCl(3)/H(2)O(2) to afford the corresponding bromination, nitration, nitrosation, and chlorination products. The reactions usually occur at the C2 and C4 positions of the metallacycle.
View Article and Find Full Text PDFTreatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf.
View Article and Find Full Text PDFTreatment of the allenylcarbene complex OsCl2(=CPh-CH=C=CHPh)(PPh3)2 with (PPh3)AuCCR in the presence of HNEt3Cl in CH2Cl2 produces osmabenzynes Os(CC(R)=C(CH2Ph)CH=CPh)Cl2(PPh3)2.
View Article and Find Full Text PDFThe reactivities of benzynes and metal-carbyne complexes are normally associated with the triple bond units. However, we have now found that electrophiles do not attack the formal osmium-carbon triple bond of osmabenzyne complex 1. Instead, 1 undergoes electrophilic substitution reactions-the typical reactions of aromatic systems.
View Article and Find Full Text PDF