Publications by authors named "Wai Tuck Soh"

From their expression in their respective allergenic source to their processing by antigen presenting cells, allergens continuously encounter proteases. The ability of allergens to resist to proteolysis by digestive enzymes or host-cell/microbial proteases is considered as an important property that influences their allergenic potential. However, the relationship between proteolytic stability and allergenicity is much more complex and depends on various factors, such as the protein structure dynamics, the exposure level, the route of sensitization, and their respective protease susceptibility.

View Article and Find Full Text PDF

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein.

View Article and Find Full Text PDF

Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform β (AtLEGβ) in Arabidopsis thaliana.

View Article and Find Full Text PDF

Tremendous progress in the last few years has been made to explain how seemingly harmless environmental proteins from different origins can induce potent Th2-biased inflammatory responses. Convergent findings have shown the key roles of allergens displaying proteolytic activity in the initiation and progression of the allergic response. Through their propensity to activate IgE-independent inflammatory pathways, certain allergenic proteases are now considered as initiators for sensitization to themselves and to non-protease allergens.

View Article and Find Full Text PDF

Rescoring of mass spectrometry (MS) search results using spectral predictors can strongly increase peptide spectrum match (PSM) identification rates. This approach is particularly effective when aiming to search MS data against large databases, for example, when dealing with nonspecific cleavage in immunopeptidomics or inflation of the reference database for noncanonical peptide identification. Here, we present inSPIRE (in silico Spectral Predictor Informed REscoring), a flexible and performant open-source rescoring pipeline built on Prosit MS spectral prediction, which is compatible with common database search engines.

View Article and Find Full Text PDF

The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source.

View Article and Find Full Text PDF

Nanomaterials have found extensive interest in the development of novel vaccines, as adjuvants and/or carriers in vaccination platforms. Conjugation of protein antigens at the particle surface by non-covalent adsorption is the most widely used approach in licensed particulate vaccines. Hence, it is essential to understand proteins' structural integrity at the material interface in order to develop safe-by-design nanovaccines.

View Article and Find Full Text PDF

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2.

View Article and Find Full Text PDF

Understanding, which factors determine the immunogenicity and immune polarizing properties of proteins, is an important prerequisite for designing better vaccines and immunotherapeutics. While extrinsic immune modulatory factors such as pathogen associated molecular patterns are well-understood, far less is known about the contribution of protein inherent features. Protein fold-stability represents such an intrinsic feature contributing to immunogenicity and immune polarization by influencing the amount of peptide-MHC II complexes (pMHCII).

View Article and Find Full Text PDF

The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications.

View Article and Find Full Text PDF

Purpose Of Review: Pathogenesis-related class 10 (PR-10) proteins are highly conserved plant proteins, which are induced in response to abiotic and biotic stress factors. To date, no unique biological function could be assigned to them. Rather a more general role of PR-10 in plant development and defense mechanisms has been proposed.

View Article and Find Full Text PDF

Bottom-up mass spectrometry-based proteomics utilizes proteolytic enzymes with well characterized specificities to generate peptides amenable for identification by high-throughput tandem mass spectrometry. Trypsin, which cuts specifically after the basic residues lysine and arginine, is the predominant enzyme used for proteome digestion, although proteases with alternative specificities are required to detect sequences that are not accessible after tryptic digest. Here, we show that the human cysteine protease legumain exhibits a strict substrate specificity for cleavage after asparagine and aspartic acid residues during in-solution digestions of proteomes extracted from , mouse embryonic fibroblast cell cultures, and leaves.

View Article and Find Full Text PDF

Background: Non-specific lipid transfer proteins (LTPs) are important allergens in fruits, pollen, vegetables, nuts and latex. Due to their compact structure, LTPs are highly resistant to heat treatment. Here, Art v 3 from mugwort pollen and Pru p 3 from peach were used as model allergens to in-depth investigate structural and immunological properties upon thermal treatment at different buffer conditions.

View Article and Find Full Text PDF

Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 μM.

View Article and Find Full Text PDF

Background: Over 100 million people worldwide suffer from birch pollen allergy. Bet v 1 has been identified as the major birch pollen allergen. However, the molecular mechanisms of birch allergic sensitization, including the roles of Bet v 1 and other components of the birch pollen extract, remain incompletely understood.

View Article and Find Full Text PDF

Birch pollen allergy affects more than 20% of the European allergic population. On a molecular level, birch pollen allergy can be linked to the two dominant allergens Bet v 1 and Bet v 2. Bet v 2 belongs to the profilin family, which is abundant in the plant kingdom.

View Article and Find Full Text PDF

The cysteine protease enzyme legumain hydrolyzes peptide bonds with high specificity after asparagine and under more acidic conditions after aspartic acid [Baker E. N.J.

View Article and Find Full Text PDF

Knowledge of the susceptibility of proteins to endolysosomal proteases provides valuable information on immunogenicity. Though Ole e 1-like proteins are considered relevant allergens, little is known about their immunogenic properties and T cell epitopes. Thus, six representative molecules, i.

View Article and Find Full Text PDF

Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms.

View Article and Find Full Text PDF

Background: The in-depth characterization of the recently identified house dust mite (HDM) major allergen Der p 23 requires the production of its recombinant counterpart because the natural allergen is poorly extractable from fecal pellets. This study aimed to provide a detailed physico-chemical characterization of recombinant Der p 23 (rDer p 23) as well as to investigate its IgE reactivity in a cohort of HDM-allergic patients from Thailand.

Methods: Purified rDer p 23, secreted from recombinant Pichia pastoris, was characterized by mass spectrometry and circular dichroism analyses as well as for its chitin-binding activity.

View Article and Find Full Text PDF

Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity.

View Article and Find Full Text PDF