Publications by authors named "Wai Long Tam"

Background: Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation.

View Article and Find Full Text PDF

Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks.

View Article and Find Full Text PDF

Bone has many functions. It is responsible for protecting the underlying soft organs, it allows locomotion, houses the bone marrow and stores minerals such as calcium and phosphate. Upon damage, bone tissue can efficiently repair itself.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear.

View Article and Find Full Text PDF

Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro.

View Article and Find Full Text PDF

Strategies for bone regeneration are undergoing a paradigm shift, moving away from the replication of end-stage bone tissue and instead aiming to recapture the initial events of fracture repair. Although this is known to resemble endochondral bone formation, chondrogenic cell types with favorable proliferative and hypertrophic differentiation properties are lacking. Recent advances in cellular reprogramming have allowed the creation of alternative cell populations with specific properties through the forced expression of transcription factors.

View Article and Find Full Text PDF

The translation of stem cell-based regenerative solutions from the laboratory to the clinic is often hindered by the culture conditions used to expand cell populations. Although fetal bovine serum (FBS) is widely used, regulatory bodies and safety concerns encourage alternative, xeno-free culturing practices. In an attempt to apply this approach to a bone-forming combination product of human periosteal progenitors (human periosteum derived cells) on a clinically used calcium phosphate carrier, FBS was substituted for human allogeneic serum (hAS) during cell expansion.

View Article and Find Full Text PDF