Publications by authors named "Wai Lan Wu"

We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination.

View Article and Find Full Text PDF

Objectives: SARS-CoV-2 has evolved rapidly into several genetic clusters. However, data on mutations during the course of infection are scarce. This study aims to determine viral genome diversity in serial samples of COVID-19 patients.

View Article and Find Full Text PDF
Article Synopsis
  • Rhinovirus (RV) and influenza viruses (IAV and IBV) are key respiratory viruses causing pneumonia, with distinct clinical and immune responses noted in previous studies.
  • A systematic study comparing the transcriptomic response of human airway cells infected with RV, IAV, and IBV revealed that RV triggers a less robust host response, showing fewer differentially expressed genes (DEGs) than the influenza viruses.
  • Key upregulated genes across all infections were linked to interferon and chemokine pathways, with ICAM5 being significantly expressed during RV infection, highlighting areas for further research.
View Article and Find Full Text PDF

Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations.

View Article and Find Full Text PDF

Background: Recent influenza B/Victoria lineage viruses contain amino acid deletions at positions 162 to 164 of the haemagglutinin (HA) protein. These amino acid deletions have affected the detection of B/Victoria lineage viruses by the lineage-specific conventional reverse-transcription polymerase chain reaction (RT-PCR) that was recommended by World Health Organization (WHO).

Objectives: We aimed to develop and evaluate a novel lineage-specific RT-PCR for rapid differentiation of the contemporary B/Victoria lineage from B/Yamagata lineage viruses.

View Article and Find Full Text PDF

Seasonal influenza virus epidemics have a major impact on healthcare systems. Data on population susceptibility to emerging influenza virus strains during the interepidemic period can guide planning for resource allocation of an upcoming influenza season. This study sought to assess the population susceptibility to representative emerging influenza virus strains collected during the interepidemic period.

View Article and Find Full Text PDF

The continuous and sporadic human transmission of highly pathogenic avian H5N1 and H7N9 influenza viruses illustrates the urgent need for efficacious vaccines. However, all tested vaccines for the H5N1 and H7N9 viruses appear to be poorly immunogenic in mammals. In this study, a series of vaccines was produced using reverse genetic techniques that possess HA and NA genes from the H5N1 virus in the genetic background of the high-yield strain A/PR/8/34 (H1N1).

View Article and Find Full Text PDF

A novel avian influenza virus H7N9 infection occurred among human populations since 2013. Although the lack of sustained human-to-human transmission limited the epidemics caused by H7N9, the late presentation of most patients and the emergence of neuraminidase-resistant strains made the development of novel antiviral strategy against H7N9 in urgent demands. In this study, we evaluated the potential of pamidronate, a pharmacological phosphoantigen that can specifically boost human Vδ2-T-cell, on treating H7N9 virus-infected humanized mice.

View Article and Find Full Text PDF

A novel avian influenza A(H7N9) virus has emerged to infect humans in eastern China since 2013. An effective vaccine is needed because of the high mortality despite antiviral treatment and intensive care. We sought to develop an effective vaccine for A(H7N9) virus.

View Article and Find Full Text PDF

Host-adaptive strategies, such as the E627K substitution in the PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity.

View Article and Find Full Text PDF

The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays.

View Article and Find Full Text PDF

A naturally-occurring H275Y oseltamivir resistant variant of influenza A (H1N1) virus emerged in 2007, subsequently becoming prevalent worldwide, via an undetermined mechanism. To understand the antigenic properties of the H275Y variant, oseltamivir resistant and susceptible strains of H1N1 viruses were analyzed by hemagglutination inhibition (HI) and microneutralization assays. HI analysis with H1-positive sera obtained from seasonal flu vaccine immunized and non-immunized individuals, and H1-specific monoclonal antibodies, revealed that resistant strains exhibited a reduced reactivity to these antisera and antibodies in the HI assay, as compared to susceptible strains.

View Article and Find Full Text PDF

The hemagglutination-inhibition (HI) titers of a panel of 25 mouse monoclonal antibodies (MAbs) against 44 isolates of highly pathogenic avian influenza virus H5N1 were determined. A two-dimensional antigenic dendrogram was constructed by hierarchical clustering of HI titers. Viruses with similar reactivity patterns were clustered horizontally, whereas MAbs were clustered vertically.

View Article and Find Full Text PDF

Severe pandemic influenza A H1N1 (2009) infection, especially in the lower respiratory tract, is often associated with the virus carrying a D222G substitution in the hemagglutinin (HA) protein of the virus. The mechanism for this association has not been fully explored. In the in vitro binding assay, it was found that clinical isolates carrying D222G substitution exhibit higher binding avidity to 2,3-linked sialic acids than the wild-type virus.

View Article and Find Full Text PDF

Highly pathogenic H5N1 virus infection causes severe disease and a high rate of fatality in humans. Development of humanized monoclonal antibodies may provide an efficient therapeutic regime for H5N1 virus infection. In the present study, broadly cross-reactive monoclonal antibodies (MAbs) derived from mice were humanized to minimize immunogenicity.

View Article and Find Full Text PDF

Hemagglutinin (HA), the major antigen on the surface of influenza viruses, is the primary target for neutralizing antibodies and vaccine design. However, frequent mutations in this gene allow the virus to evade host immune responses and conventional prophylaxis and treatment. In this report, we humanized 4D1 and 10F7 mouse monoclonal antibodies (mAbs) that, we had previously shown to display broad-spectrum neutralization to avian H5N1 virus.

View Article and Find Full Text PDF

Background: Passive immunization with human H5 antisera or H5-specific monoclonal antibodies (MAbs) has potential as an effective treatment for acute H5N1 influenza virus infection, but its efficacy against antigenically diverse H5N1 viruses is unconfirmed.

Methods: Cross-protection against antigenically diverse H5N1 strains with H5-specific MAbs, generated by successive immunization of antigenically distinct strains, was evaluated in mice.

Results: A panel of 52 broadly cross-reactive H5 specific MAbs were generated and characterized.

View Article and Find Full Text PDF

Antigenic profiles of post-2002 H5N1 viruses representing major genetic clades and various geographic sources were investigated using a panel of 17 monoclonal antibodies raised from five H5N1 strains. Four antigenic groups from seven clades of H5N1 virus were distinguished and characterized based on their cross-reactivity to the monoclonal antibodies in hemagglutination inhibition and cell-based neutralization assays. Genetic polymorphisms associated with the variation of antigenicity of H5N1 strains were identified and further verified in antigenic analysis with recombinant H5N1 viruses carrying specific mutations in the hemagglutinin protein.

View Article and Find Full Text PDF