Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates.
View Article and Find Full Text PDFStructural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited.
View Article and Find Full Text PDFAlthough structures of vitrified supramolecular complexes have been determined at near-atomic resolution, elucidating in situ molecular structure in living cells remains a challenge. Here, we report a straightforward liquid cell technique, originally developed for real-time visualization of dynamics at a liquid-gas interface using transmission electron microscopy, to image wet biological samples. Due to the scattering effects from the liquid phase, the micrographs display an amplitude contrast comparable to that observed in negatively stained samples.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, , LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro.
View Article and Find Full Text PDFOnly praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target.
View Article and Find Full Text PDFNonpyrophoric aminophosphines reacted with indium(III) halides in the presence of zinc chloride have emerged as promising phosphorus precursors in the synthesis of colloidal indium phosphide (InP) quantum dots (QDs). Nonetheless, due to the required P/In ratio of 4:1, it remains challenging to prepare large-sized (>5 nm), near-infrared absorbing/emitting InP QDs using this synthetic scheme. Furthermore, the addition of zinc chloride leads to structural disorder and the formation of shallow trap states inducing spectral broadening.
View Article and Find Full Text PDFIn-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage.
View Article and Find Full Text PDFPoxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res.
View Article and Find Full Text PDFCry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources.
View Article and Find Full Text PDFImmunoglobulins type-M (IgMs) are one of the first antibody classes mobilized during immune responses against pathogens and tumor cells. Binding to specific target antigens enables the interaction with the C1 complex which strongly activates the classical complement pathway. This biological function is the basis for the huge therapeutic potential of IgMs.
View Article and Find Full Text PDFB-site doping is an emerging strategy for tuning the emission wavelength of cesium lead halide ABX nanocrystals. We present a simple method for the postsynthetic doping of CsPbBr nanocrystals with aluminum at room temperature by exposing them to a solution of AlBr in dibromomethane. Despite the much smaller ionic radius of Al compared to that of Pb, nominal doping levels in a range from 8.
View Article and Find Full Text PDFAn electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification.
View Article and Find Full Text PDFProtein crystallization is an astounding feat of nature. Even though proteins are large, anisotropic molecules with complex, heterogeneous surfaces, they can spontaneously group into two- and three-dimensional arrays with high precision. And yet, the biggest hurdle in this assembly process, the formation of a nucleus, is still poorly understood.
View Article and Find Full Text PDFSelf-assembly of proteins holds great promise for the bottom-up design and production of synthetic biomaterials. In conventional approaches, designer proteins are pre-programmed with specific recognition sites that drive the association process towards a desired organized state. Although proven effective, this approach poses restrictions on the complexity and material properties of the end-state.
View Article and Find Full Text PDFRecurrent reproductive failure (RRF), such as recurrent pregnancy loss and repeated implantation failure, is characterized by complex etiologies and particularly associated with diverse maternal factors. It is currently believed that RRF is closely associated with the maternal environment, which is, in turn, affected by complex immune factors. Without the use of automated tools, it is often difficult to assess the interaction and synergistic effects of the various immune factors on the pregnancy outcome.
View Article and Find Full Text PDFWe describe herein the assembly and in vivo evaluation of a tailor-made micellar carrier system designed for the optimized encapsulation of a superfluorinated MRI probe and further targeting of solid tumors. The in vivo validation was carried out on MC38 tumor-bearing mice which allowed the confirmation of the efficient targeting properties of the nano-carrier, as monitored by 19F-MRI.
View Article and Find Full Text PDFLead halide perovskite (LHP) based colloidal quantum dots (CQDs) have tremendous potential for photocatalysis due to their exceptional optical properties. However, their applicability in catalysis is restricted due to poor chemical stability and low recyclability. We report halide-passivated, monodisperse CsPbBrCQDs as a stable and efficient visible-light photocatalyst for organic transformations.
View Article and Find Full Text PDFElectron diffraction allows protein structure determination when only nanosized crystals are available. Nevertheless, multiple elastic (or dynamical) scattering, which is prominent in electron diffraction, is a concern. Current methods for modeling dynamical scattering by multi-slice or Bloch wave approaches are not suitable for protein crystals because they are not designed to cope with large molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Biocompatibility, biofunctionality, and chemical stability are essential criteria to be fulfilled by quantum dot (QD) emitters for bio-imaging and -sensing applications. In addition to these criteria, achieving efficient near-infrared (NIR) emission with nontoxic QDs remains very challenging. In this perspective, we developed water-soluble NIR-emitting AgInS/ZnS core/shell (AIS/ZnS) QDs functionalized with DNA.
View Article and Find Full Text PDFDownstream processing (DSP) of large bionanoparticles is still a challenge. The present study aims to systematically compare some of the most commonly used DSP strategies for capture and purification of enveloped viruses and virus-like particles (eVLPs) by using the same staring material and analytical tools. As a model, Human Immunodeficiency Virus-1 (HIV-1) gag VLPs produced in CHO cells were used.
View Article and Find Full Text PDFRecombinant production of IgM antibodies poses a special challenge due to the complex structure of the proteins and their not yet fully elucidated interactions with the immune effector proteins, especially the complement system. In this study, we present transient expression of IgM antibodies (IgM617, IgM012 and IgM012_GL) in HEK cells and compared it to the well-established stable expression system in CHO cells. The presented workflow investigates quality attributes including productivity, polymer distribution, glycosylation, antibody structure and activation of the classical complement pathway.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(i) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity.
View Article and Find Full Text PDFMany attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism () presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging.
View Article and Find Full Text PDFWith the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSeS shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence quantum yields (PLQY) > 50% and similar PL decay times (64-67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber.
View Article and Find Full Text PDF