Publications by authors named "Wai Kong Yeoh"

A complete phase diagram and its corresponding physical properties are essential prerequisites to understand the underlying mechanism of iron-based superconductivity. For the structurally simplest 11 (FeSeTe) system, earlier attempts using bulk samples have not been able to do so due to the fabrication difficulties. Here, thin FeSe(x)Te(1-x) films with the Se content covering the full range (0 ≤ x ≤ 1) were fabricated by using pulsed laser deposition method.

View Article and Find Full Text PDF

Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.

View Article and Find Full Text PDF

Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected.

View Article and Find Full Text PDF

Bi(2)Sr(3)Co(2)O(y) thin films are prepared on SrTiO(3) (100), (110) and (111) single crystal substrates using the sol-gel method. All the thin films are c-axis oriented regardless of the orientation of the substrate suggesting self-assembled c-axis orientation, and X-ray photoelectron spectroscopy results give evidence of coexistence of Co(3+) and Co(2+) ions in the derived films. Transmission electronic microscopy observations reveal that all samples are c-axis oriented with no obvious differences for different samples, and the c-axis lattice constant is determined as ~15 Å suggesting the misfit structure.

View Article and Find Full Text PDF