Background And Aim: Thiopurines are recommended for maintenance of steroid-free remission (SFR) in inflammatory bowel disease (IBD). Thiopurine metabolite monitoring (MM) is increasingly used in the West but remains novel in Singapore, with limited information on its therapeutic and economic benefits. Hence, this study aims to investigate MM's clinical utility and its impact on healthcare resource utilization in Singaporean IBD patients.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a highly lethal and debilitating disease with limited therapeutic options. The aim of this clinical study was to evaluate the safety, efficacy and pharmacokinetics of a novel regimen comprised of metronomic oxaliplatin (O), chronomodulated capecitabine (X) and UGT1A1 genotype-guided dosing of irinotecan (IRI) [OXIRI] as well as its immunomodulatory effects. Thirty-six patients were enrolled into either dose-escalation or expansion cohorts.
View Article and Find Full Text PDFBackground: Genetic variants of TPMT and NUDT15 have been reported to predict the inter-patient variability in response and toxicity profiles of patients receiving thiopurine therapy. However, the clinical utility of TPMT genotyping in guiding thiopurine doses has been questionable, in part due to underlying differences in the prevalence of TPMT variants in both Caucasian and Asian populations. Several NUDT15 variants have been associated with thiopurine-induced leukopenia, particularly in Asian cohorts.
View Article and Find Full Text PDFVitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption.
View Article and Find Full Text PDFDefects in stem cell renewal or progenitor cell expansion underlie ageing-related diseases such as osteoporosis. Yet much remains unclear about the mechanisms regulating progenitor expansion. Here we show that the tyrosine kinase c-Abl plays an important role in osteoprogenitor expansion.
View Article and Find Full Text PDFDNA damage and the elicited cellular response underlie the etiology of tumorigenesis and ageing. Yet, how this response integrates inputs from cells' environmental cues remains underexplored. Here we report that the BMP-Smad1 pathway, which is essential for embryonic development and tissue homeostasis, has an important role in the DNA damage response and oncogenesis.
View Article and Find Full Text PDFOsteoporosis is a result of the disruption of bone homeostasis that is carried out by bone-forming osteoblasts and bone-degrading osteoclasts. The most common treatment of osteoporosis is N-containing bisphosphonates, a class of non-hydrolyzable pyrophosphate analogs. They have strong affinity to Ca(2+) of hydroxyapatite with high specificity and can only be liberated from the bone in an acidic environment.
View Article and Find Full Text PDFp53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR-S6K1 through p38alpha MAPK.
View Article and Find Full Text PDFp53-p21-cyclin-dependent kinase and p16(INK4a)-cyclin-dependent kinase pathways have parallel functions in preventing tumorigenesis. In cancer patients, tumor suppressor p53 is frequently inactivated through mutations, whereas p16(INK4a) is silenced through promoter methylation. However, the interaction between these two pathways is less well understood.
View Article and Find Full Text PDFOsteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation participates in signaling pathways that control osterix expression and osteoblast differentiation.
View Article and Find Full Text PDFInsights into the host antiviral strategies as well as viral disease manifestations can be achieved through the elucidation of host- and virus-mediated transcriptional responses. An oligo-based microarray was employed to analyse mRNAs from rhabdomyosarcoma cells infected with the MS/7423/87 strain of enterovirus 71 (EV71) at 20 h post infection. Using Acuity software and LOWESS normalization, 152 genes were found to be downregulated while 39 were upregulated by greater than twofold.
View Article and Find Full Text PDF