Diarrhea is a globally major problem especially Escherichia coli induced diarrhea becoming fatal nowadays in developing countries. Colon-targeted chitosan microspheres (Ms) comprising of lipase‑zinc and lipase‑copper complexes were prepared, loaded with Attapulgite (Cts-Li-Zn-ATG/Ms and Cts-Li-Cu-ATG/Ms) for the treatment of bacterial diarrhea. Thin layer chromatography (TLC) and Fourier-transform infrared spectroscopy (FTIR) studies were used for confirmation of proposed lipase-metal complexes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
The study aimed to improve the treatment of impetigo with naturally occurring quercetin and its copper-quercetin (Cu-Q) complex by preparing sustained-release (SR) nanoparticles of polycaprolactone (PCL). The solvent evaporation method was used for the copper-quercetin (Cu-Q) complex formation, and their PCL nanoparticles (PCL-NPs, Q-PCL-NPs, and Cu-Q-PCL-NPs) were prepared by the high-pressure homogenization method. Synthesis of nanoparticles was confirmed by their physicochemical and antibacterial properties of quercetin against Gram-positive as well as Gram-negative bacteria.
View Article and Find Full Text PDFCurr Top Med Chem
August 2022
Curr Res Pharmacol Drug Discov
October 2021
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
July 2020
Chemodynamic therapy (CDT) takes the advantages of Fenton-type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety.
View Article and Find Full Text PDFCombining nanomaterials in varying morphology and functionalities gives rise to a new class of composite materials leading to innovative applications. In this study, we designed a heterostructured hybrid material consisting of two-dimensional bismuth nanosheets augmented by molecularly imprinted networks. Antibiotic overuse is now one of the main concerns in health management, and their monitoring is highly desirable but challenging.
View Article and Find Full Text PDFThe aim of study was cross linking of high molecular weight chitosan nanoparticles containing 5-fluorouracil to improve dissolution rate and ultimately enhance its bioavailability by reverse emulsion/micelles method and cross-linking agent i.e. glutaraldehyde (GA 25% aqueous solution in water).
View Article and Find Full Text PDFThe fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter.
View Article and Find Full Text PDFMOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field.
View Article and Find Full Text PDFNanosensors with high sensitivity utilize electrical, optical, and acoustic properties to improve the detection limits of analytes. The unique and exceptional properties of nanomaterials (large surface area to volume ratio, composition, charge, reactive sites, physical structure and potential) are exploited for sensing purposes. High-sensitivity in analyte recognition is achieved by preprocessing of samples, signal amplification and by applying different transduction approaches.
View Article and Find Full Text PDFThe development of a simplified theranostic system with high-efficiency for multifunctional imaging-guided photodynamic therapy/photothermal therapy (PDT/PTT) is a great challenge. Therefore, a versatile fabrication strategy was introduced to design new FeO-black TiO nanocomposites (Fe-Ti NCs). The Fe-Ti NCs exhibit an intense broad light absorption, high photothermal conversion efficiency, inherited phototherapy, and favorable magnetic resonance imaging (MRI) properties.
View Article and Find Full Text PDFDevelopment of 1D nanostructures with novel morphology is a recent scientific attraction, so to say yielding unusual materials for advanced applications. In this work, we have prepared solution grown, single-pot 1D ZnWO nanowires (NWs) and the morphology is assessed for label-free but selective detection of chloramphenicol. This is the first report where, such structures are being investigated for this purpose.
View Article and Find Full Text PDFFor SLN lymph node biopsy (SLNB), SLN mapping has become a standard of care procedure that can accurately locate the micrometastases disseminated from primary tumor sites to the regional lymph nodes. The broad array of SLN mapping has prompted the development of a wide range of SLN tracers, rationally designed for noninvasive and high-resolution imaging of SLNs. At present, conventional SLN imaging probes (blue dyes, radiocolloids, and few other small-molecular dyes), although serving the clinical needs, are often associated with major issues such as insufficient accumulation in SLN, short retention time, staining of the surgical field, and other adverse side effects.
View Article and Find Full Text PDFThis work is the first report describing the solution grown 3D manganese oxide nanofibrous (MnO NFs) mesh and its potential for the simultaneous detection of biomolecules such as ascorbic acid and uric acid. The mesh is synthesized by a facile, one-pot, and cost-effective hydrothermal approach without using any template or structure directing compound. The morphology consists of randomly placed nanofibres possessing a diameter in the range of 10-25 nm, and length of several micron; constituting a highly porous and flexible material.
View Article and Find Full Text PDFPhotothermal therapy (PTT) has emerged as one of the promising cancer therapy approaches. However, nanoparticles (NPs) which are used for PTT might be biopersistent and potentially toxic. The current research explores the promising use of FeO nanoflowers as nontoxic, efficient photothermal, and strong T type magnetic resonance imaging (MRI) contrast agents for imaging-guided photothermal cancer therapy.
View Article and Find Full Text PDFWe report the development of effective drug loaded nanocarriers to combat multidrug resistant infection especially in case of osteomyelitis. The hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) and solid/non-hollow hydroxyapatite nanoparticles (sHANPs) were synthesized by core-shell and co-precipitation techniques respectively. High encapsulation of the drug (ciprofloxacin) was observed in hmHANPs as compared to sHANPs, which may be due to the hollow porous structure of hmHANPs.
View Article and Find Full Text PDFWe report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA.
View Article and Find Full Text PDF