Surface -functionalised silica networks are advanced adsorbents. They have been given much attention for treating wastewater using the adsorption technique due to the silanol reactivity, resulting in strong binding affinities towards many pollutants. This review discusses the removal of anionic azo dyes utilising various functional groups such as amines, surfactants, polymers, macrocyclic, and other chelating groups functionalised on silica's surface.
View Article and Find Full Text PDFIn this study, the operational factors affecting the bioregeneration of AO7-loaded MAMS particles in batch system, namely redox condition, initial acclimated biomass concentration, shaking speed and type of acclimated biomass were investigated. The results revealed that with the use of mixed culture acclimated to AO7 under anoxic/aerobic conditions, enhancement of the bioregeneration efficiency of AO7-loaded MAMS and the total removal efficiency of COD could be achieved when the bio-decolorization and bio-mineralization stages were fully aerated with dissolved oxygen above 7 mg/L. Shorter duration of bioregeneration was achieved by using relatively higher initial biomass concentration and lower shaking speed, respectively, whereas variations of biomass concentration and shaking speed did not have a pronounced effect on the bioregeneration efficiency.
View Article and Find Full Text PDFThe objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
View Article and Find Full Text PDF