The adsorption-desorption behavior of flax fibers (FFs) is reported in this paper. FFs are a potential desiccant material for air-to-air energy wheels, which transfer heat and moisture in building heating, ventilation, and air conditioning (HVAC) systems. The raw FFs sample was subjected to physical modification, followed by complementary material characterization to understand the relationship between its structure and its moisture uptake performance.
View Article and Find Full Text PDFThe role of chemical modification of pristine linen fiber (LF) on its physicochemical and adsorption properties is reported in this contribution. The surface and textural properties of the pristine LF and its peroxyacetic acid- (PAF) and chlorite-treated (CF) fiber forms were characterized by several complementary methods: spectroscopy (SEM, TEM, FT-IR, and XPS), thermal analysis (DSC and TGA), gas/water adsorption isotherms, and zeta potential (ξ). The results obtained reveal that the surface charge and textural properties (surface area and pore structure) of the LF material was modified upon chemical treatment, as indicated by changes in the biomass composition, morphology, ξ-values, and water/dye uptake properties of the fiber samples.
View Article and Find Full Text PDFThe physicochemical and hydration properties of mechanically modified flax fibers (FFs) were investigated herein. Raw flax fibers (FF-R) were ball-milled and sieved through mesh with various aperture sizes (420, 210, and 125 μm) to achieve modified samples, denoted as FF-420, FF-210, and FF-125, respectively. The physicochemical and hydration properties of FF-R with variable particle sizes were characterized using several complementary techniques: microscopy (SEM), spectroscopy (FT-IR, XRD, and XPS), thermoanalytical methods (DSC and TGA), adsorption isotherms using gas/dye probes, and solvent swelling studies in liquid HO.
View Article and Find Full Text PDFMg-Al-Ox supported monometallic (Ni) and bimetallic (Ni-Co) catalysts with different compositions of Mg and Al were investigated for CO reforming of CH, using both coal and pure gas feeds, to limit the emission of these environmental pollutant gases into the atmosphere. Results showed that all the catalysts were active for dry reforming reaction using both feeds. Reactants conversion, stoichiometric product selectivity, and resistance to carbon deposition of catalysts remarkably improved when the Mg/Al ratio was greater than 1.
View Article and Find Full Text PDF