Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.
View Article and Find Full Text PDFPhotobiomodulation (PBM) represents a promising and powerful approach for non-invasive therapeutic interventions. This emerging field of research has gained a considerable attention due to its potential for multiple disciplines, including medicine, neuroscience, and sports medicine. While PBM has shown the ability to stimulate various cellular processes in numerous medical applications, the fine-tuning of treatment parameters, such as wavelength, irradiance, treatment duration, and illumination geometry, remains an ongoing challenge.
View Article and Find Full Text PDFPhotobiomodulation (PBM) therapy is a relatively new modality for the combined treatment of cancer. Pre-treatment of certain types of cancer cells with PBM potentiates the treatment efficacy of photodynamic therapy (PDT). The mechanism of action of this synergetic effect is not yet fully understood.
View Article and Find Full Text PDFTherapies to accelerate vascular repair are currently lacking. Pre-clinical studies suggest that hydrogen sulfide (HS), an endogenous gasotransmitter, promotes angiogenesis. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source of HS, would stimulate angiogenesis and vascular repair.
View Article and Find Full Text PDFNowadays, photobiomodulation (PBM) in combination with chemotherapy or other therapeutic approaches is an attractive adjuvant modality for cancer treatment. Targeted destruction of cancer cells is one of the main advantages of photodynamic therapy (PDT). We have shown in previous studies that the combination of PBM at 808 nm and hypericin-mediated PDT increases PDT efficacy in human glioblastoma cells U87 MG.
View Article and Find Full Text PDFCathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer.
View Article and Find Full Text PDFFor many decades the chicken embryo chorioallantoic membrane (CAM) has been used for research as an in vivo model in a large number of different fields, including toxicology, bioengineering, and cancer research. More specifically, the CAM is also a suitable and convenient model system in the field of photodynamic therapy (PDT), mainly due to the easy access of its membrane and the possibility of grafting or growing tumors on the membrane and, interestingly, to study the PDT effects on its dense vascular network. In addition, the CAM is simple to handle and cheap.
View Article and Find Full Text PDFProtoporphyrin IX (PpIX) is a molecule produced in the mitochondria following the administration of its approved precursor, aminolevulinic acid (ALA). Strong light absorber at different wavelengths in the visible range, PpIX is extensively used as a photosensitizer (PS) for Photodynamic Therapy (PDT). PpIX is also an ideal molecular probe for the quantification of the tissue oxygen partial pressure (pO), as its delayed fluorescence (DF) is quenched by oxygen, creating a direct relationship between the DF lifetime and the pO.
View Article and Find Full Text PDFGlioblastoma is one of the most aggressive types of tumors. Although few treatment options are currently available, new modalities are needed to improve prognosis. In this context, photodynamic therapy (PDT) is a promising adjuvant treatment modality.
View Article and Find Full Text PDFProtoporphyrin IX (PpIX) is produced in the mitochondria and used as fluorescent contrast agent or photosensitizer after exogenous 5-aminolevulinic acid (ALA) delivery in cancer photodynamic detection and therapy (PDT). Although routinely used in the clinics, the stimulated production of PpIX is often insufficient and/or heterogeneous within the lesions, thereby limiting the PDT performances. Since photobiomodulation, which is based on the illumination of the tissues with sub-thermal radiometric conditions in the red or near-infrared, is known to stimulate the cell metabolism, we have optimized these conditions in vitro.
View Article and Find Full Text PDFPhotosensitizers of singlet oxygen exhibit three main types of reverse intersystem-crossing (RISC): thermally activated, triplet-triplet annihilation, and singlet oxygen feedback. RISC can be followed by delayed fluorescence (DF) emission, which can provide important information about the excited state dynamics in the studied system. An excellent model example is a widely used clinical photosensitizer Protoporphyrin IX, which manifests all three mentioned types of RISC and DF.
View Article and Find Full Text PDFPurpose: To determine and compare the origin of the external surface reflections produced by commonly used intraocular lenses (IOLs).
Methods: The specular reflection taking place at the anterior surface of eight types of IOLs (IOL power = 22.00 diopters [D]) with different refractive indices (RIs), optical design, and ultraviolet and blue light-filtering function were measured.
Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)] in the chicken embryo chorioallantoic membrane model.
View Article and Find Full Text PDFDelayed fluorescence (DF) is a long-lived luminescence process used in a variety of applications ranging from oxygen sensing in biological tissues to organic Light Emitting Diodes. In common cases, DF results from the de-excitation of the first excited triplet state via the first excited singlet state of the chromophore, which produces a mono-exponential light signal whose amplitude and lifetime give an insight into the probed environment. However, non-linear de-excitation reactions such as triplet-triplet annihilation, which can cause decays to lose their mono-exponential nature, are often neglected.
View Article and Find Full Text PDFWe present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the limitations of existing state-of-the-art computer vision methods applied to endoscopy and promoting the development of new approaches suitable for clinical translation. Endoscopy is a routine imaging technique for the detection, diagnosis and treatment of diseases in hollow-organs; the esophagus, stomach, colon, uterus and the bladder.
View Article and Find Full Text PDF
Vascular-targeted low-dose photodynamic therapy (L-PDT) was shown to improve chemotherapy distribution in malignant pleural tumors such as malignant pleural mesothelioma (MPM). However, the mechanisms triggered by L-PDT on the tumor vasculature are still debated. In pericyte and endothelial cell co-cultures, we show that pericytes exhibit enhanced sensitivity towards L-PDT compared to endothelial cells, displaying actin stress fibers and cellular contraction via Rho/ROCK kinase signaling myosin light chain and focal adhesion kinase phosphorylation (MLC-P, FAK-P).
View Article and Find Full Text PDFBackground: Low-density lipoproteins (LDL) were used as a natural drug delivery system for the transport of hypericin (Hyp) in the bloodstream of the chicken's chorioallantoic membrane model (CAM). Hyp was chosen as a model for hydrophobic drug used in photo-diagnosis and photo-treatments (PDT). The extravasation of the Hyp:LDL complexes for different concentration ratios and the redistribution of Hyp between different serum components were investigated with an innovative statistical treatment.
View Article and Find Full Text PDFModels mimicking the endogenous production of protoporphyrin IX (PpIX), as well as its fluorescence, are of high interest for applied and fundamental studies in the fields of cancer detection by fluorescence imaging, photodynamic therapy (PDT), and photobiomodulation (PBM). Here, we present and describe optical properties of the yeast-based models able to produce PpIX endogenously after the administration of 5-aminolevulinic acid (ALA) and/or 2,2'-bipyridyl. As their optical properties have an important impact on the spatial distribution of the fluence rate in these liquid models, their absorption and reduced scattering coefficients were determined to be between 400 and 808 nm for two yeast solutions previously described by our group.
View Article and Find Full Text PDFThe interaction between a ruthenium - based water soluble oxygen probe ([Ru(Phen)], phen - phenanthroline) and human serum albumin (HSA) was investigated with the aim of describing the influence of HSA on the [Ru(Phen)] luminescence properties. Nowadays, several oxygen sensitive luminescent probes are used to determine the oxygen level in different compartments of living organisms. However, they can interact, depending on their hydrophilic/hydrophobic characters, with various serum proteins, and/or lipids, during their utilization for invivo oxygen measurement.
View Article and Find Full Text PDFBackground: Low-dose photodynamic therapy PDT (photoinduction) can modulate tumor vessels and enhance the uptake of liposomal cisplatin (Lipoplatin®) in pleural malignancies. However, the photo-induction conditions must be tightly controlled as overtreatment shuts down tumor vessels and enhances normal tissue drug uptake.
Material And Methods: In a pleural sarcoma and adenocarcinoma rat model (n = 12/group), we applied photoinduction (0.
A one-axis charge-coupled device camera-based goniometer setup was developed to measure the three-dimensional radiance profile (longitudinal, azimuthal, and polar) of cylindrical light diffusers in air and water. An algorithm was programmed to project the two-dimensional camera data onto the diffuser coordinates. The optical system was designed to achieve a spatial resolution on the diffuser surface in the submillimeter range.
View Article and Find Full Text PDFThe availability of reproducible, convenient, and inexpensive model organisms able to generate predictable levels of endogenous porphyrins, including protoporphyrin IX (PpIX), is essential in photomedicine research. Saccharomyces cerevisiae produces endogenous PpIX and was used as a model organism for this study with the aim to maximize endogenous PpIX fluorescence intensity. It was found that PpIX fluorescence was significantly enhanced by administration of 5-aminolevulinic acid (ALA) and 2,2?-bipyridyl.
View Article and Find Full Text PDFAcute coronary syndrome is a life-threatening condition of utmost clinical importance, which, despite recent progress in the field, is still associated with high morbidity and mortality. Acute coronary syndrome results from a rupture or erosion of vulnerable atherosclerotic plaque with secondary platelet activation and thrombus formation, which leads to partial or complete luminal obstruction of a coronary artery. During the last decade, scientific evidence demonstrated that when an acute coronary event occurs, several nonculprit plaques are in a "vulnerable" state.
View Article and Find Full Text PDF