Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation.
View Article and Find Full Text PDFBackground: The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction.
View Article and Find Full Text PDFObesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity.
View Article and Find Full Text PDFSepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice.
View Article and Find Full Text PDFEstradiol has been used to prevent metabolic diseases, bone loss and menopausal symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed for type 2 diabetes mellitus and lowers food intake and body mass while improving insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, insulin resistance and changes in the lipid profile.
View Article and Find Full Text PDFExp Physiol
May 2019
New Findings: What is the central question of this study? Is there sexual dimorphism in the occurrence of hepatic endoplasmic reticulum stress? What is the main finding and its importance? The transition from prepubertal to the adult age is associated with an increase in the unfolded protein response markers in the liver of male rats, which is probably due to an increase in serum testosterone levels.
Abstract: Male rodents present a higher predisposition to obesity and insulin resistance than females. These disorders have been associated with endoplasmic reticulum (ER) stress.
Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice.
View Article and Find Full Text PDFThe thyroid hormones (THs), triiodothyronine (T) and thyroxine (T), are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK) is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme.
View Article and Find Full Text PDFUnlabelled: Hexokinase (HK) is the first enzyme in the glycolytic pathway and is responsible for glucose phosphorylation and fixation into the cell. HK (HK-II) is expressed in skeletal muscle and can be found in the cytosol or bound mitochondria, where it can protect cells against insults such as oxidative stress. 4-Phenyl butyric acid (4-PBA) is a chemical chaperone that inhibits endoplasmic reticulum stress and contributes to the restoring of glucose homeostasis.
View Article and Find Full Text PDFAMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently.
View Article and Find Full Text PDFExp Parasitol
May 2016
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDFJ Invertebr Pathol
May 2016
The effect of infection by Echinostoma paraensei on the mitochondrial physiology of Biomphalaria glabrata was investigated after exposure to 50 miracidia. The snails were dissected one, two, three and four weeks after infection for collection and mechanical permeabilization of the gonad-digestive gland (DGG) complex. The results obtained indicate that prepatent infection by this echinostomatid fluke significantly suppresses the phosphorylation state (respiratory state 3) and basal oxygen consumption of B.
View Article and Find Full Text PDFFibers of β-glucan have been added to foods for their thickening properties, their ability to form gel at low concentrations, but mainly for their appeal in health promotion. Current analysis evaluates the influence of acetylation (4% and 6% acetic anhydride for 10 and 20 min) on the functional, thermal, morphological and rheological properties of the concentrate containing 31% of oat β-glucan. The degree of substitution of the acetylated β-glucans ranged from 0.
View Article and Find Full Text PDFClassic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity.
View Article and Find Full Text PDFUncoupling proteins (UCP) are able to increase H(+) leakage across the inner mitochondrial membrane, thus dissipating the membrane potential and increasing oxygen consumption. Despite the identification of several UCP orthologs in birds, reptiles, amphibians and fish, little is known about their functional properties in fish. The aim of this work was to identify and characterize a UCP in mitochondria found in goldfish white skeletal muscle.
View Article and Find Full Text PDFGoldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates.
View Article and Find Full Text PDFExposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (∼2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding.
View Article and Find Full Text PDFBrain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage.
View Article and Find Full Text PDFThis work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as starvation, diabetes, and exercise. The VLE was designed to combine online activities with traditional course content and presented guided inquiry-based activities to assist in the use of original scientific articles as educational resources.
View Article and Find Full Text PDFHK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK.
View Article and Find Full Text PDF3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions.
View Article and Find Full Text PDFThyroid hormone is a critical determinant of cellular metabolism and differentiation. Precise tissue-specific regulation of the active ligand 3,5,3'-triiodothyronine (T3) is achieved by the sequential removal of iodine groups from the thyroid hormone molecule, with type 3 deiodinase (D3) comprising the major inactivating pathway that terminates the action of T3 and prevents activation of the prohormone thyroxine. Using cells endogenously expressing D3, we found that hypoxia induced expression of the D3 gene DIO3 by a hypoxia-inducible factor-dependent (HIF-dependent) pathway.
View Article and Find Full Text PDFUbiquitination is a critical posttranslational regulator of protein stability and/or subcellular localization. Here we show that ubiquitination can also regulate proteins by transiently inactivating enzymatic function through conformational change in a dimeric enzyme, which can be reversed upon deubiquitination. Our model system is the thyroid hormone-activating type 2 deiodinase (D2), an endoplasmic reticulum-resident type 1 integral membrane enzyme.
View Article and Find Full Text PDFPeroxisome proliferator activator receptor-gamma coactivator 1 (PGC-1) is a major candidate gene for diabetes-related metabolic phenotypes, contributing to decreased expression of nuclear-encoded mitochondrial genes in muscle and adipose tissue. We have demonstrated that muscle expression of PGC-1alpha and -beta is reduced in both genetic (Lep(ob)/Lep(ob)) and acquired obesity (high fat diet). In C57BL6 mice, muscle PGC-1alpha expression decreased by 43% (p < 0.
View Article and Find Full Text PDFDisturbances in energy homeostasis can result in obesity and other metabolic diseases. Here we report a metabolic pathway present in normal human skeletal muscle myoblasts that is activated by the small polyphenolic molecule kaempferol (KPF). Treatment with KPF leads to an approximately 30% increase in skeletal myocyte oxygen consumption.
View Article and Find Full Text PDF