Life Sci
August 2023
Prenatal overexposure to glucocorticoids (GC) can lead to behavioral changes in adulthood. We aimed to explore the effects of gestational administration of vitamin D on the behavioral responses of dams and their offspring prenatally exposed to dexamethasone (DEX). Vitamin D (500UI) was given daily during the whole pregnancy (VD group).
View Article and Find Full Text PDFBrain Res Bull
October 2022
Vasoactive intestinal peptide (VIP), a neuromodulator present in the hypothalamus, plays an important role in the regulation of food intake. Paraventricular nucleus of the hypothalamus (PVN) is involved in ingestive responses and regulates the nitric oxide (NO) pathway. The main objectives of this study were to investigate metabolic changes established after different doses and times of VIP microinjection on the PVN, and the effect of VIP microinjection on the PVN on food intake and the role of NO in this control.
View Article and Find Full Text PDFExp Physiol
December 2021
New Findings: What is the central question of this study? Giot1, the gene for gonadotropin inducible ovarian transcription factor 1 (GIOT1), is upregulated in osmotically challenged rats: does Giot1 gene expression in the paraventricular nucleus have a role in controlling fluid intake following dehydration and what is the role of ovarian hormones in the modulation of GIOT1 actions? What is the main finding and its importance? GIOT1 acts to regulate water and salt intake as well as hormone secretion after dehydration. The identification of genes that participate in the hormone and behavioural responses involved with hydromineral homeostasis is essential for future exploration of novel drug targets for the treatment of metabolic disease.
Abstract: In order to maintain body fluid balance after dehydration, hypothalamic neurons of the paraventricular nucleus (PVN) are activated to promote secretion of vasopressin (AVP) and oxytocin (OXT) from the neurohypophysis, and to modulate the behavioural allostatic responses of thirst and salt appetite.
Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions.
View Article and Find Full Text PDFHypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms.
View Article and Find Full Text PDFNitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalamic level, with particular emphasis on the regulation of neurohypophyseal system output.
View Article and Find Full Text PDFNeuropharmacology
July 2012
It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus.
View Article and Find Full Text PDFCholecystokinin (CCK) provides a meal-related signal that activates brainstem neurons, which have reciprocal interconnections with the hypothalamic paraventricular nucleus. Neurons that express corticotrophin-releasing factor (CRF) in the hypothalamus possess anorexigenic effects and are activated during endotoxaemia. This study investigated the effects of CCK(1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia and hypothalamic CRF neuronal activation.
View Article and Find Full Text PDFExp Physiol
September 2007
The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (I.C.
View Article and Find Full Text PDF