Plague is a flea-borne zoonosis that affects a wide range of mammals and still causes outbreaks in human populations yearly across several countries. While crucial for proper treatment, early diagnosis is still a major challenge in low- and middle-income countries due to poor access to laboratory infrastructure in rural areas. To tackle this issue, we developed and evaluated a new Fraction 1 capsular antigen (F1)-based rapid diagnostic test (RDT) as an alternative method for plague serological diagnosis and surveillance in humans and other mammals.
View Article and Find Full Text PDFBackground: We aimed to determine the cellular recruitment (leukocyte rolling and adhesion) by which the , () , and ) species in the mesenteric microcirculation of BALB/c mice.
Methods: Five experimental groups were considered: group 1 (); group 2 (); group 3 (); group 4 (control group with PBS); group 5 (negative control group), analyzed 3, 6, 12, and 24 h after parasite inoculation.
Results: Infections by the different species caused an increase in the number of rolling leukocytes: a peak at 6 h; and a peak at 3 h.
Lymphatic filariasis (LF) is a parasitic disease caused by the worms Wuchereria bancrofti, Brugia malayi, or Brugia timori. It is a tropical and subtropical illness that affects approximately 67 million people worldwide and that still requires better diagnostic tools to prevent its spread and enhance the effectiveness of control procedures. Traditional parasitological tests and diagnostic methods based on whole protein extracts from different worms are known for problems related to sample time collection, sensitivity, and specificity.
View Article and Find Full Text PDFVisceral Leishmaniasis and HIV-AIDS coinfection (VL/HIV) is considered a life-threatening pathology when undiagnosed and untreated, due to the immunosuppression caused by both diseases. Serological tests largely used for the VL diagnosis include the direct agglutination test (DAT), ELISA and immunochromatographic (ICT) assays. For VL diagnosis in HIV infections, different studies have shown that the use of the DAT assay facilitates the VL diagnosis in co-infected patients, since the performance of the most widely used ELISA and ICT tests, based on the recombinant protein rK39, are much less efficient in HIV co-infections.
View Article and Find Full Text PDFThe development and application of safe and effective immunoprophylactic/immunotherapeutic agents against canine visceral leishmaniasis (CanL) have been pointed out as the only means for the real control of the disease. Thus, this study aimed to evaluate the cellular immune response of dogs, elicited by the new recombinant proteins of , Lci10 and Lci13, in order to investigate their potential for vaccinology. Twenty-four dogs were submitted to clinical, parasitological, serological and molecular tests, and then separated into two study groups: 12 infected (InD) and 12 non-infected dogs (NInD), and six of each group were directed for Lci10 and Lci13 evaluation.
View Article and Find Full Text PDFBackground: Visceral leishmaniasis (VL) is a major neglected disease, potentially fatal, whose control is still impaired by inefficient and/or expensive treatment and diagnostic methods. The most promising approach for VL diagnosis uses serological assays with recombinant proteins, since they are more efficient and easier to perform. Tests developed for the human form of the disease, however, have not been shown to be efficient for its diagnosis in the canine host, the major reservoir for the American VL.
View Article and Find Full Text PDFVisceral Leishmaniasis (VL) is a severe disease, caused by the protozoans Leishmania infantum and L. donovani that is widely diagnosed using serological tools. These, however, have limitations in performance that limit their use for the correct identification of the cases.
View Article and Find Full Text PDFCurrent strategies for the control of zoonotic visceral leishmaniasis (VL) rely on its efficient diagnosis in both human and canine hosts. The most promising and cost effective approach is based on serologic assays with recombinant proteins. However, no single antigen has been found so far which can be effectively used to detect the disease in both dogs and humans.
View Article and Find Full Text PDF