Neurotox Res
December 2022
Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols.
View Article and Find Full Text PDFAmyloid-β (Aβ) peptides play a significant role in the pathogenesis of Alzheimer's disease (AD). Neurotoxic effects promoted by Aβ peptides involve glutamate transmission impairment, decrease of neurotrophic factors, mitochondrial dysfunction, oxidative stress, synaptotoxicity, and neuronal degeneration. Here, we assessed the early events evoked by Aβ on the hippocampus.
View Article and Find Full Text PDFNeurotox Res
October 2018
The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.
View Article and Find Full Text PDFIntracerebroventricular (icv) amyloid-beta (Aβ) infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aβ infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aβ-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice.
View Article and Find Full Text PDFGuanosine, the endogenous guanine nucleoside, prevents cellular death induced by ischemic events and is a promising neuroprotective agent. During an ischemic event, nitric oxide has been reported to either cause or prevent cell death. Our aim was to evaluate the neuroprotective effects of guanosine against oxidative damage in hippocampal slices subjected to an in vitro ischemia model, the oxygen/glucose deprivation (OGD) protocol.
View Article and Find Full Text PDFGuanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM).
View Article and Find Full Text PDFEnvironmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE.
View Article and Find Full Text PDFSUMO (small ubiquitin-like modifier) conjugation is a critically important control process in all eukaryotic cells, because it acts as a biochemical switch and regulates the function of hundreds of proteins in many different pathways. Although the diverse functional consequences and molecular targets of SUMOylation remain largely unknown, SUMOylation is becoming increasingly implicated in the pathophysiology of Alzheimer's disease (AD). Apart from the central SUMO-modified disease-associated proteins, such as amyloid precursor protein, amyloid β, and tau, SUMOylation also regulates several other processes underlying AD.
View Article and Find Full Text PDFNeurotox Res
July 2015
Deposition of amyloid-β (Aβ) peptides into specific encephalic structures has been pointed as an important event related to Alzheimer's disease pathogenesis and associated with activation of glial cells, neuroinflammation, oxidative responses, and cognitive deficits. Aβ-induced pro-oxidative damage may regulate the activity of glutamate transporters, leading to reduced glutamate uptake and, as a consequence, excitotoxic events. Herein, we evaluated the effects of the pretreatment of atorvastatin, a HMG-CoA reductase inhibitor, on behavioral and biochemical alterations induced by a single intracerebroventricular (i.
View Article and Find Full Text PDFQuinolinic acid (QA) is a NMDA receptor agonist implicated in pathological conditions, such as neurodegenerative diseases and epilepsy. Time-course responses of different brain regions after QA i.c.
View Article and Find Full Text PDFObjectives: Aloysia gratissima aqueous extract (AE) was investigated as a putative protective agent against quinolinic acid (QA)-induced seizures in mice and hippocampal cell damage. Additionally, AE and ferulic acid (FA), the major compound of AE, were tested against neurotoxicity evoked by glutamate or its N-methyl-D-aspartate receptor (NMDAR) agonist, QA on hippocampal slices, in vitro.
Methods: Mice were treated with AE before QA infusion (36.
Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD.
View Article and Find Full Text PDFOxygen-glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells.
View Article and Find Full Text PDFPreconditioning by N-methyl-d-aspartate (NMDA) may be promoted in vivo by the administration of a sub-convulsing dose of NMDA, with a neuroprotective effect against seizures and neuronal death induced by the infusion of quinolinic acid (QA) in mice. This study aimed to evaluate the participation of protein kinase C (PKC), cyclic AMP-dependent protein kinase (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), Ca(2+)/calmodulin dependent protein kinase II (CaMKII) and phosphatidilinositol-3 kinase (PI3K) signaling pathways in this neuroprotection model. Adult Swiss male mice were preconditioned with NMDA 24 h before the infusion of QA, and were treated with inhibitors of the aforementioned signaling pathways either 15 min before the preconditioning or infusion of QA.
View Article and Find Full Text PDFStatins are cholesterol-lowering agents due to the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Recent studies have shown statins possess pleiotropic effects, which appear to be independent from its cholesterol-lowering action. In this study, we investigated whether atorvastatin would have protective effects against hippocampal cell death promoted by quinolinic acid (QA)-induced seizures in mice.
View Article and Find Full Text PDFGuanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygen-glucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection.
View Article and Find Full Text PDF