Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate.
View Article and Find Full Text PDFThe bioMérieux BIOFIRE Joint Infection (JI) Panel is a multiplex diagnostic test for the simultaneous and rapid (~1 h) detection of 39 potential pathogens and antimicrobial resistance (AMR) genes directly from synovial fluid (SF) samples. Thirty-one species or groups of microorganisms are included in the kit, as well as several AMR genes. This study, performed to evaluate the BIOFIRE JI Panel for regulatory clearance, provides data from a multicenter evaluation of 1,544 prospectively collected residual SF samples with performance compared to standard-of-care (SOC) culture for organisms or polymerase chain reaction (PCR) and sequencing for AMR genes.
View Article and Find Full Text PDFA 16-year-old, female, captive Bengal tiger (Panthera tigris tigris) had a history of a recurrent subcutaneous mass. After two attempts at surgical removal, euthanasia was elected during the third surgical attempt due to the degree of neoplastic infiltration. At necropsy, a large subcutaneous mass infiltrated the dermis, subcutis and abdominal wall with metastasis to the lungs, spleen and adrenal glands.
View Article and Find Full Text PDFThe DIR2s RNA aptamer, a second-generation, in-vitro selected binder to dimethylindole red (DIR), activates the fluorescence of cyanine dyes, DIR and oxazole thiazole blue (OTB), allowing detection of two well-resolved emission colors. Using Fab BL3-6 and its cognate hairpin as a crystallization module, we solved the crystal structures of both the apo and OTB-SO bound forms of DIR2s at 2.0 Å and 1.
View Article and Find Full Text PDFPhotochem Photobiol
January 2019
Spectral properties and fluorogenic behaviors of five novel thiophene variants of malachite green (MG), termed MGTs, were determined. Appreciable changes as a function of homologation and substitution pattern, including absorption band positions and intensities and fluorescence quantum yields were observed. In particular, the shorter wavelength y-band absorption was found to shift over a nearly 200 nm range based on aryl group variation, allowing fine-tuning of the excitation wavelength for these dyes.
View Article and Find Full Text PDFThe effect of ring substitution on the kinetics of reaction of arenes, heterocycles, and alkenes with hydroxyl radical is investigated in terms of reactivity and selectivity, using laser flash photolysis (LFP) in acetonitrile solution. The LFP data indicate that charge-transfer contributions in the transition state play an important role in dictating reactivity, and there is a correlation between the experimental and calculated ionization potentials of the arenes and alkenes and their respective reactivities. The reactivity observed for arenes in acetonitrile exhibits a much greater sensitivity toward substitution on the ring than in water, and therefore aqueous data cannot be used to predict reactivity in nonaqueous environments.
View Article and Find Full Text PDFLive-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABAR) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABAR γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2FAP).
View Article and Find Full Text PDFAn RNA aptamer selected for binding to the fluorogenic cyanine dye, dimethylindole red (DIR), also binds and activates another cyanine, oxazole thiazole blue (OTB), giving two well-resolved emission colors. The aptamer binds to each dye with submicromolar K values, and the resulting fluoromodules exhibit fluorescence quantum yields ranging from 0.17 to 0.
View Article and Find Full Text PDFThe leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/β-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
November 2016
Background: Mitral regurgitation (MR) is associated with worse survival in those undergoing cardiac resynchronization therapy (CRT). Left ventricular (LV) lead position in CRT may ameliorate mechanisms of MR. We examine the association between a longer LV electric delay (QLV) at the LV stimulation site and MR reduction after CRT.
View Article and Find Full Text PDFHerein we report an injectable film by which antibodies can be localized in vivo. The system builds upon a bifunctional polypeptide consisting of a fluorogen-activating protein (FAP) and a β-fibrillizing peptide (βFP). The FAP domain generates fluorescence that reflects IgG binding sites conferred by Protein A/G (pAG) conjugated with the fluorogen malachite green (MG).
View Article and Find Full Text PDFBackground: Membrane proteins regulate a diversity of physiological processes and are the most successful class of targets in drug discovery. However, the number of targets adequately explored in chemical space and the limited resources available for screening are significant problems shared by drug-discovery centers and small laboratories. Therefore, a low-cost and universally applicable screen for membrane protein trafficking was developed.
View Article and Find Full Text PDFContext: Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart.
View Article and Find Full Text PDFA new class of biosensors, fluorogen activating proteins (FAPs), has been successfully used to track receptor trafficking in live cells. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens, and thus FAP-based assays are highly sensitive. Application of the FAP-based assay for protein trafficking in high-throughput flow cytometry resulted in the discovery of a new class of compounds that interferes with the binding between fluorogens and FAP, thus blocking the fluorescence signal.
View Article and Find Full Text PDFOptical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths.
View Article and Find Full Text PDFThe alteration of cellular functions by anchoring macromolecules to specified organelles may reveal a new area of therapeutic potential and clinical treatment. In this work, a unique phenotype was evoked by influencing cellular behavior through the modification of subcellular structures with genetically targetable macromolecules. These fluorogen-functionalized polymers, prepared via controlled radical polymerization, were capable of exclusively decorating actin, cytoplasmic, or nuclear compartments of living cells expressing localized fluorgen-activating proteins.
View Article and Find Full Text PDFThe introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2015
Type 2 diabetes, obesity, and sex difference affect myocardial glucose uptake and utilization. However, their effect on the intramyocellular fate of glucose in humans has been unknown. How the heart uses glucose is important, because it affects energy production and oxygen efficiency, which in turn affect heart function and adaptability.
View Article and Find Full Text PDFThe Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D.
View Article and Find Full Text PDFDye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5.
View Article and Find Full Text PDFThe fluorescence of the SKC-513 ((E)-N-(9-(4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-(butyl(3-sulfopropyl)amino)-3H-xanthen-3-ylidene)-N-(3-sulfopropyl)butan-1-aminium) dye is shown experimentally to have high sensitivity to binding of the K(+) ion. Computations are used to explore the potential origins of this sensitivity and to make some suggestions regarding structural improvements. In the absence of K(+), excitation is to two nearly degenerate states, a neutral (N) excited state with a high oscillator strength, and a charge-transfer (CT) state with a lower oscillator strength.
View Article and Find Full Text PDFMonoclonal antibodies are one of the most useful and ubiquitous affinity reagents used in the biological sciences. Immunostaining of fixed and live cells for microscopy or cytometry measurements frequently employs fluorescently labeled antibodies, in particular fluorescein-labeled antibodies. This dye emits light at a wavelength overlapping with cellular autofluorescence, making it difficult to measure antibody binding to proteins of relatively low copy number or in cells of high green autofluorescence.
View Article and Find Full Text PDF