Ischemic stroke is the second leading cause of death worldwide. Following an ischemic event, neuronal death is triggered by uncontrolled glutamate release leading to overactivation of glutamate sensitive -methyl-d-aspartate receptor (NMDAR). For gating, NMDARs require not only the binding of glutamate, but also of glycine or a glycine-like compound as a co-agonist.
View Article and Find Full Text PDFGlycine serves a dual role in neurotransmission. It is the primary inhibitory neurotransmitter in the spinal cord and brain stem and is also an obligatory coagonist at the excitatory glutamate, N-methyl-D-aspartate receptor (NMDAR). Therefore, the postsynaptic action of glycine should be strongly regulated to maintain a balance between its inhibitory and excitatory inputs.
View Article and Find Full Text PDFBackground: In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs.
View Article and Find Full Text PDF