This work examines the use of cellulose in the elimination of anionic dye, indigo carmine and methyl red, from aqueous media. Theoretical analyses revealed that the examined compounds had several reactive sites that encouraged dyes to adhere to the cellulose surface, and molecular dynamics simulations demonstrated that this adsorption occurred flat-lying on the cellulose (200) surface. However, it has been discovered that the reactivity of individual molecules is limited in its ability to foretell the effectiveness and characteristics of compound adsorption on cellulose.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers.
View Article and Find Full Text PDFThis research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 2 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents.
View Article and Find Full Text PDFDuring the last few years, important advances have been made in big data exploration, complex pattern recognition and prediction of complex variables. Machine learning (ML) algorithms can efficiently analyze voluminous data, identify complex patterns and extract conclusions. In chemical engineering, the application of machine learning approaches has become highly attractive due to the growing complexity of this field.
View Article and Find Full Text PDFParacetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required.
View Article and Find Full Text PDFNowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures.
View Article and Find Full Text PDFCurrently, the apparition of new SARS-CoV, known as SARS-CoV-2, affected more than 34 million people and causing high death rates worldwide. Recently, several studies reported SARS-CoV-2 ribonucleic acid (RNA) in hospital wastewater. SARS-CoV-2 can be transmitted between humans via respiratory droplets, close contact and fomites.
View Article and Find Full Text PDFThis study aims to evaluate and understand the adsorption of eriochrome black T (EB) by chitosan extracted from local shrimp shells under different experimental conditions. Chitosan samples were characterized by XRD, SEM, and FTIR. Experimental results indicate that the process was pH-dependent with a high adsorption capacity in acidic medium.
View Article and Find Full Text PDF