Tree phenology is a major component of the global carbon and water cycle, serving as a fingerprint of climate change, and exhibiting significant variability both within and between species. In the emerging field of drone monitoring, it remains unclear whether this phenological variability can be effectively captured across numerous tree species. Additionally, the drivers behind interspecific variations in the phenology of deciduous trees are poorly understood, although they may be linked to plant functional traits.
View Article and Find Full Text PDFWhen meteorological conditions deviate from the optimal range for human well-being, the risks of illness, injury, and death increase, and such impacts are feared in particular with more frequent and intense extreme weather conditions resulting from climate change. Thermal indices, such as the universal thermal climate index (UTCI), can better assess human weather-related stresses by integrating multiple weather components. This paper quantifies and compares the seasonal and spatial association of UTCI with mortality, morbidity, and road accidents in the federal state of Bavaria, Germany.
View Article and Find Full Text PDFBackground: Climate change and increasing risks of extreme weather events affect human health and lead to changes in the emergency department (ED) admissions and the emergency medical services (EMS) operations. For a better allocation of resources in the healthcare system, it is essential to predict ED numbers based on environmental variables. This publication aims to quantify weather, air pollution and calendar-related effects on daily ED admissions.
View Article and Find Full Text PDF