Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25.
View Article and Find Full Text PDFAntibodies play a central role in the immune defense against SARS-CoV-2. Emerging evidence has shown that nonneutralizing antibodies are important for immune defense through Fc-mediated effector functions. Antibody subclass is known to affect downstream Fc function.
View Article and Find Full Text PDFGroup A streptococcus (GAS) is a highly adapted, human-specific pathogen that is known to manipulate the immune system through various mechanisms. GAS' M protein constitutes a primary target of the immune system due to its spatial configuration and dominance on the bacterial surface. Antibody responses targeting the M protein have been shown to favor the conserved C region.
View Article and Find Full Text PDFGroup A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein.
View Article and Find Full Text PDFThe human pathogen Streptococcus pyogenes causes substantial morbidity and mortality. It is unclear if antibodies developed after infections with this pathogen are opsonic and if they are strain specific or more broadly protective. Here, we quantified the opsonic-antibody response following invasive S.
View Article and Find Full Text PDFSpike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response.
View Article and Find Full Text PDFis a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g.
View Article and Find Full Text PDFis a strict intracellular bacterium that causes sexually transmitted infections and eye infections that can lead to life-long sequelae. Treatment options are limited to broad-spectrum antibiotics that disturb the commensal flora and contribute to selection of antibiotic-resistant bacteria. Hence, development of novel drugs that specifically target would be beneficial.
View Article and Find Full Text PDFinfections are a global health problem and new approaches to treat with drugs of high specificity would be valuable. A library of substituted ring fused 2-pyridones has been synthesized and evaluated for their ability to attenuate infectivity. pharmacokinetic studies were performed, with the best candidates demonstrating that a C8-methylsulfonamide substituent improved pharmacokinetic properties important for oral administration.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2019
, the causative agent of plague, possesses a number of virulence mechanisms that allows it to survive and proliferate during its interaction with the host. To discover additional infection-specific factors, a transposon site hybridization (TraSH)-based genome-wide screen was employed to identify genomic regions required for its survival during cellular infection. In addition to several well-characterized infection-specific genes, this screen identified three chromosomal genes (, and ), located in an apparent operon, that promoted successful infection.
View Article and Find Full Text PDFIn this study, we describe the application of a transformed strain constitutively expressing the red fluorescent protein mCherry, to allow real-time monitoring of the infection cycle and screening for agents that block replication of . The red fluorescent strain was detected autonomously without antibody staining and was equally susceptible to doxycycline as the wild type strain. A high-throughput screening assay was developed using the transformed strain and automated fluorescence microscopy.
View Article and Find Full Text PDFThe host employs both cell-autonomous and system-level responses to limit pathogen replication in the initial stages of infection. Previously, we reported that the eukaryotic initiation factor 2α (eIF2α) kinases heme-regulated inhibitor (HRI) and protein kinase R (PKR) control distinct cellular and immune-related activities in response to diverse bacterial pathogens. Specifically for , there was reduced translocation of the pathogen to the cytosolic compartment in HRI-deficient cells and consequently reduced loading of pathogen-derived antigens on major histocompatibility complex class I (MHC-I) complexes.
View Article and Find Full Text PDFChlamydia trachomatis is a global health burden due to its prevalence as a sexually transmitted disease and as the causative agent of the eye infection trachoma. We recently discovered 3-amido thiazolino 2-pyridones which attenuated C. trachomatis infectivity without affecting host cell or commensal bacteria viability.
View Article and Find Full Text PDFThe bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C.
View Article and Find Full Text PDFThe host-encoded Perforin-2 (encoded by the macrophage-expressed gene 1, Mpeg1), which possesses a pore-forming MACPF domain, reduces the viability of bacterial pathogens that reside within membrane-bound compartments. Here, it is shown that Perforin-2 also restricts the proliferation of the intracytosolic pathogen Listeria monocytogenes Within a few hours of systemic infection, the massive proliferation of L. monocytogenes in Perforin-2(-/-)mice leads to a rapid appearance of acute disease symptoms.
View Article and Find Full Text PDFMicrobial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines.
View Article and Find Full Text PDFChlamydia trachomatis replication takes place inside of a host cell, exclusively within a vacuole known as the inclusion. During an infection, the inclusion expands to accommodate the increasing numbers of C. trachomatis.
View Article and Find Full Text PDFHere we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors.
View Article and Find Full Text PDFIn eukaryotic cells, there are two well characterized pathways that regulate translation initiation in response to stress, and each have been shown to be targeted by various viruses. We recently showed in a yeast-based model that the bacterial virulence factor YopJ disrupts one of these pathways, which is centered on the α-subunit of the translation factor eIF2. Here, we show in mammalian cells that induction of the eIF2 signaling pathway occurs following infection with bacterial pathogens and that, consistent with our yeast-based findings, YopJ reduces eIF2 signaling in response to endoplasmic reticulum stress, heavy metal toxicity, dsRNA, and bacterial infection.
View Article and Find Full Text PDFCandida albicans is a common opportunistic pathogen that causes a wide variety of diseases in a human immunocompromised host leading to death. In a pathogen, cell wall proteins are important for stability as well as for acting as antigenic determinants and virulence factors. Pir32 is a cell wall protein and member of the Pir protein family previously shown to be upregulated in response to macrophage contact and whose other member, Pir1, was found to be necessary for cell wall rigidity.
View Article and Find Full Text PDFCandida albicans is an important fungal pathogen of humans that is responsible for the majority of mucosal and systemic candidiasis. The host-pathogen interaction in C. albicans has been the subject of intense investigation as it is the primary step that leads to establishment of infection.
View Article and Find Full Text PDFOne hundred and three Streptococcus pyogenes isolates recovered mainly from streptococcal throat infections in Lebanon were characterized by emm and PFGE typing. Thirty-three emm types and subtypes were detected among the isolates. PFGE was more discriminatory as a typing method.
View Article and Find Full Text PDFThe fungal pathogen Candida albicans is a leading causative agent of death in immunocompromised individuals. Many factors have been implicated in virulence including filamentation-inducing transcription factors, adhesins, lipases and proteases. Many of these factors are glycosylphosphatidylinositol-anchored cell surface antigenic determinant proteins.
View Article and Find Full Text PDF