Publications by authors named "Wadim Weber"

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca in- and efflux patterns across the inner membrane of .

View Article and Find Full Text PDF

Membranes provide a highly selective barrier that defines the boundaries of any cell while providing an interface for communication and nutrient uptake. However, despite their central physiological role, our capacity to study or even engineer the permeation of distinct solutes across biological membranes remains rudimentary. This especially applies to Gram-negative bacteria, where the outer and inner membrane impose two permeation barriers.

View Article and Find Full Text PDF

A broad variety of biomolecules is industrially produced in bacteria and yeasts. These microbial expression hosts can be optimized through genetic engineering using CRISPR tools. Here, we designed and characterized such a modular genome editing system based on the Cas12a-like RNA-guided nuclease MAD7 in Escherichia coli.

View Article and Find Full Text PDF

Nanopores comprise a versatile class of membrane proteins that carry out a range of key physiological functions and are increasingly developed for different biotechnological applications. Yet, a capacity to study and engineer protein nanopores by combinatorial means has so far been hampered by a lack of suitable assays that combine sufficient experimental resolution with throughput. Addressing this technological gap, the functional nanopore (FuN) screen now provides a quantitative and dynamic readout of nanopore assembly and function in the context of the inner membrane of .

View Article and Find Full Text PDF

The development of flexible and reconfigurable sensors that can be readily tailored toward different molecular analytes constitutes a key goal and formidable challenge in biosensing. In this regard, synthetic nanopores have emerged as potent physical transducers to convert molecular interactions into electrical signals. Yet, systematic strategies to functionalize their surfaces with receptor proteins for the selective detection of molecular analytes remain scarce.

View Article and Find Full Text PDF

A nanopore-based Cu -sensing system is reported that allows for an ultrasensitive and selective detection of Cu with the possibility for a broad range of applications, for example in medical diagnostics. A fluorescent ATCUN-like peptide 5/6-FAM-Dap-β-Ala-His is employed to selectively bind Cu ions in the presence of Ni and Zn and was crafted into ion track-etched nanopores. Upon Cu binding the fluorescence of the peptide sensor is quenched, permitting the detection of Cu in solution.

View Article and Find Full Text PDF

Proteases have emerged as a promising class of enzymes to build post-translationally regulated signalling functions in diverse organisms and cell types ranging from simple prokaryotes to higher eukaryotes and in reconstituted systems in vitro. An expanding repertoire of proteases can now be readily configured to build tailored sensors, switches and transducers, and is increasingly facilitating the construction of complex sensory systems for a variety of biotechnological and biomedical applications. This is complemented by an increasing understanding of the fundamental design principles underlying biological signal processing at both protein-level and circuit-level that is now actively probed through synthesis.

View Article and Find Full Text PDF

Planar lipid bilayers constitute a versatile method for measuring the activity of protein channels and pores on a single molecule level. Ongoing efforts attempt to tailor this method for detecting biomedically relevant target analytes or for high-throughput screening of drugs. To improve the mechanical stability of bilayer recordings, we use a thin-film epoxy resist ADEX as septum in free-standing vertical bilayers.

View Article and Find Full Text PDF

Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities.

View Article and Find Full Text PDF