Wireless Capsule Endoscopy (WCE) has fundamentally transformed diagnostic methodologies for small-bowel (SB) abnormalities, providing a comprehensive and non-invasive gastrointestinal assessment in contrast to conventional endoscopic procedures. The King Abdulaziz University Hospital Capsule (KAUHC) dataset comprises annotated WCE images specifically curated for Saudi Arabian residents. Comprising 10.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2024
Alzheimer's disease is a severe brain disorder that causes harm in various brain areas and leads to memory damage. The limited availability of labeled medical data poses a significant challenge for accurate Alzheimer's disease detection. There is a critical need for effective methods to improve the accuracy of Alzheimer's disease detection, considering the scarcity of labeled data, the complexity of the disease, and the constraints related to data privacy.
View Article and Find Full Text PDFLung cancer emerges as a major factor in cancer-related fatalities in the current generation, and it is predicted to continue having a long-term impact. Detecting symptoms early becomes crucial for effective treatment, underscoring innovative therapy's necessity. Many researchers have conducted extensive work in this area, yet challenges such as high false-positive rates and achieving high accuracy in detection continue to complicate accurate diagnosis.
View Article and Find Full Text PDFAccurate skin diagnosis through end-user applications is important for early detection and cure of severe skin diseases. However, the low quality of dermoscopic images hampers this mission, especially with the presence of hair on these kinds of images. This paper introduces , a novel, self-supervised conditional diffusion model designed specifically for the automatic generation of hairless dermoscopic images to improve the quality of skin diagnosis applications.
View Article and Find Full Text PDFComputer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms.
View Article and Find Full Text PDFDistributed denial-of-service (DDoS) attacks persistently proliferate, impacting individuals and Internet Service Providers (ISPs). Deep learning (DL) models are paving the way to address these challenges and the dynamic nature of potential threats. Traditional detection systems, relying on signature-based techniques, are susceptible to next-generation malware.
View Article and Find Full Text PDFSemantic segmentation of Remote Sensing (RS) images involves the classification of each pixel in a satellite image into distinct and non-overlapping regions or segments. This task is crucial in various domains, including land cover classification, autonomous driving, and scene understanding. While deep learning has shown promising results, there is limited research that specifically addresses the challenge of processing fine details in RS images while also considering the high computational demands.
View Article and Find Full Text PDFWireless Sensor Networks (WSNs) and the Internet of Things (IoT) have emerged as transforming technologies, bringing the potential to revolutionize a wide range of industries such as environmental monitoring, agriculture, manufacturing, smart health, home automation, wildlife monitoring, and surveillance. Population expansion, changes in the climate, and resource constraints all offer problems to modern IoT applications. To solve these issues, the integration of Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) has come forth as a game-changing solution.
View Article and Find Full Text PDFSince the release of ChatGPT, numerous studies have highlighted the remarkable performance of ChatGPT, which often rivals or even surpasses human capabilities in various tasks and domains. However, this paper presents a contrasting perspective by demonstrating an instance where human performance excels in typical tasks suited for ChatGPT, specifically in the domain of computer programming. We utilize the IEEExtreme Challenge competition as a benchmark-a prestigious, annual international programming contest encompassing a wide range of problems with different complexities.
View Article and Find Full Text PDFIntrusion detection systems, also known as IDSs, are widely regarded as one of the most essential components of an organization's network security. This is because IDSs serve as the organization's first line of defense against several cyberattacks and are accountable for accurately detecting any possible network intrusions. Several implementations of IDSs accomplish the detection of potential threats throughout flow-based network traffic analysis.
View Article and Find Full Text PDFThe comparison of low-rank-based learning models for multi-label categorization of attacks for intrusion detection datasets is presented in this work. In particular, we investigate the performance of three low-rank-based machine learning (LR-SVM) and deep learning models (LR-CNN), (LR-CNN-MLP) for classifying intrusion detection data: Low Rank Representation (LRR) and Non-negative Low Rank Representation (NLR). We also look into how these models' performance is affected by hyperparameter tweaking by using Guassian Bayes Optimization.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2023
In the Internet of Medical Things (IoMT), de novo peptide sequencing prediction is one of the most important techniques for the fields of disease prediction, diagnosis, and treatment. Recently, deep-learning-based peptide sequencing prediction has been a new trend. However, most popular deep learning models for peptide sequencing prediction suffer from poor interpretability and poor ability to capture long-range dependencies.
View Article and Find Full Text PDFHaving access to safe water and using it properly is crucial for human well-being, sustainable development, and environmental conservation. Nonetheless, the increasing disparity between human demands and natural freshwater resources is causing water scarcity, negatively impacting agricultural and industrial efficiency, and giving rise to numerous social and economic issues. Understanding and managing the causes of water scarcity and water quality degradation are essential steps toward more sustainable water management and use.
View Article and Find Full Text PDFIn applications of the Internet of Things (IoT), where many devices are connected for a specific purpose, data is continuously collected, communicated, processed, and stored between the nodes. However, all connected nodes have strict constraints, such as battery usage, communication throughput, processing power, processing business, and storage limitations. The high number of constraints and nodes makes the standard methods to regulate them useless.
View Article and Find Full Text PDFThe Vision Transformer (ViT) architecture has been remarkably successful in image restoration. For a while, Convolutional Neural Networks (CNN) predominated in most computer vision tasks. Now, both CNN and ViT are efficient approaches that demonstrate powerful capabilities to restore a better version of an image given in a low-quality format.
View Article and Find Full Text PDFVideo streaming-based real-time vehicle identification and license plate recognition systems are challenging to design and deploy in terms of real-time processing on edge, dealing with low image resolution, high noise, and identification. This paper addresses these issues by introducing a novel multi-stage, real-time, deep learning-based vehicle identification and license plate recognition system. The system is based on a set of algorithms that efficiently integrate two object detectors, an image classifier, and a multi-object tracker to recognize car models and license plates.
View Article and Find Full Text PDFWith the advancement of camera and wireless technologies, surveillance camera-based occupancy has received ample attention from the research community. However, camera-based occupancy monitoring and wireless channels, especially Wi-Fi hotspot, pose serious privacy concerns and cybersecurity threats. Eavesdroppers can easily access confidential multimedia information and the privacy of individuals can be compromised.
View Article and Find Full Text PDFAcademics and the health community are paying much attention to developing smart remote patient monitoring, sensors, and healthcare technology. For the analysis of medical scans, various studies integrate sophisticated deep learning strategies. A smart monitoring system is needed as a proactive diagnostic solution that may be employed in an epidemiological scenario such as COVID-19.
View Article and Find Full Text PDFA brain tumour is one of the major reasons for death in humans, and it is the tenth most common type of tumour that affects people of all ages. However, if detected early, it is one of the most treatable types of tumours. Brain tumours are classified using biopsy, which is not usually performed before definitive brain surgery.
View Article and Find Full Text PDFExtensive research has been conducted on healthcare technology and service advancements during the last decade. The Internet of Medical Things (IoMT) has demonstrated the ability to connect various medical apparatus, sensors, and healthcare specialists to ensure the best medical treatment in a distant location. Patient safety has improved, healthcare prices have decreased dramatically, healthcare services have become more approachable, and the operational efficiency of the healthcare industry has increased.
View Article and Find Full Text PDFPristine and trustworthy data are required for efficient computer modelling for medical decision-making, yet data in medical care is frequently missing. As a result, missing values may occur not just in training data but also in testing data that might contain a single undiagnosed episode or a participant. This study evaluates different imputation and regression procedures identified based on regressor performance and computational expense to fix the issues of missing values in both training and testing datasets.
View Article and Find Full Text PDFInternet of Things (IoT) involves a set of devices that aids in achieving a smart environment. Healthcare systems, which are IoT-oriented, provide monitoring services of patients' data and help take immediate steps in an emergency. Currently, machine learning-based techniques are adopted to ensure security and other non-functional requirements in smart health care systems.
View Article and Find Full Text PDFInformation fusion in automated vehicle for various datatypes emanating from many resources is the foundation for making choices in intelligent transportation autonomous cars. To facilitate data sharing, a variety of communication methods have been integrated to build a diverse V2X infrastructure. However, information fusion security frameworks are currently intended for specific application instances, that are insufficient to fulfill the overall requirements of Mutual Intelligent Transportation Systems (MITS).
View Article and Find Full Text PDFFor many years, mental health has been hidden behind a veil of shame and prejudice. In 2017, studies claimed that 10.7% of the global population suffered from mental health disorders.
View Article and Find Full Text PDF