Background: Pharmacogenetic testing improves the efficacy and safety of antidepressant pharmacotherapy for moderate-severe major depressive disorder by identifying genetic variations that influence medication metabolism, and adjusting treatment regimens accordingly. This study aims to assess the cost-effectiveness of implementing a pharmacogenetic testing approach to guide the prescription of antidepressants.
Methods: From the public hospital perspective, we developed a two-stage decision tree diagram of a short-term 6-week follow up, and a lifetime Markov model with 3-month cycles.
Pharmacogenetic (PGx)-informed medication prescription is a cutting-edge genomic application in contemporary medicine, offering the potential to overcome the conventional "trial-and-error" approach in drug prescription. The ability to use an individual's genetic profile to predict drug responses allows for personalized drug and dosage selection, thereby enhancing the safety and efficacy of treatments. However, despite significant scientific and clinical advancements in PGx, its integration into routine healthcare practices remains limited.
View Article and Find Full Text PDFDespite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is underrepresented in the human genome variation databases. Here we describe insights from Phase 1 of the Qatar Genome Program with whole genome sequenced 6047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons.
View Article and Find Full Text PDFRisk genes for Mendelian (single-gene) disorders (SGDs) are consistent across populations, but pathogenic risk variants that cause SGDs are typically population-private. The goal was to develop "QChip1," an inexpensive genotyping microarray to comprehensively screen newborns, couples, and patients for SGD risk variants in Qatar, a small nation on the Arabian Peninsula with a high degree of consanguinity. Over 10 variants in 8445 Qatari were identified for inclusion in a genotyping array containing 165,695 probes for 83,542 known and potentially pathogenic variants in 3438 SGDs.
View Article and Find Full Text PDFHost genomic information, specifically genomic variations, may characterize susceptibility to disease and identify people with a higher risk of harm, leading to better targeting of care and vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the other hand has a very low mortality rate.
View Article and Find Full Text PDFA recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks.
View Article and Find Full Text PDFA recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks.
View Article and Find Full Text PDFGenomics has the potential to revolutionize medical approaches to disease prevention, diagnosis, and treatment, but it does not come without challenges. The success of a national population-based genome program, like the Qatar Genome Program (QGP), depends on the willingness of citizens to donate samples and take up genomic testing services. This study explores public attitudes of the Qatari population toward genetic testing and toward participating in the QGP.
View Article and Find Full Text PDFBackground: Family-based designs, from twin studies to isolated populations with their complex genealogical data, are a valuable resource for genetic studies of heritable molecular biomarkers. Existing software for family-based studies have mainly focused on facilitating association between response phenotypes and genetic markers, and no user-friendly tools are at present available to straightforwardly extend association studies in related samples to large datasets of generic quantitative data, as those generated by current -omics technologies.
Results: We developed PopPAnTe, a user-friendly Java program, which evaluates the association of quantitative data in related samples.
Background: Environmentally influenced phenotypes, such as obesity and insulin resistance, can be transmitted over multiple generations. Epigenetic modifications, such as methylation of DNA cytosine-guanine (CpG) pairs, may be carriers of inherited information. At the population level, the methylation state of such "heritable" CpG sites is expected to follow a trimodal distribution, and their mode of inheritance should be Mendelian.
View Article and Find Full Text PDFBackground: The prevalence of type 2 diabetes (T2D) and obesity has dramatically increased within a few generations, reaching epidemic levels. In addition to genetic risk factors, epigenetic mechanisms triggered by changing environment are investigated for their role in the pathogenesis of these complex diseases. Epigenome-wide association studies (EWASs) have revealed significant associations of T2D, obesity, and BMI with DNA methylation.
View Article and Find Full Text PDFAims/hypothesis: Metabolomics has opened new avenues for studying metabolic alterations in type 2 diabetes. While many urine and blood metabolites have been associated individually with diabetes, a complete systems view analysis of metabolic dysregulations across multiple biofluids and over varying timescales of glycaemic control is still lacking.
Methods: Here we report a broad metabolomics study in a clinical setting, covering 2,178 metabolite measures in saliva, blood plasma and urine from 188 individuals with diabetes and 181 controls of Arab and Asian descent.
Background: Modification of DNA by methylation of cytosines at CpG dinucleotides is a widespread phenomenon that leads to changes in gene expression, thereby influencing and regulating many biological processes. Recent technical advances in the genome-wide determination of single-base DNA-methylation enabled epigenome-wide association studies (EWASs). Early EWASs established robust associations between age and gender with the degree of CpG methylation at specific sites.
View Article and Find Full Text PDFBackground: With diminishing costs of next generation sequencing (NGS), whole genome analysis becomes a standard tool for identifying genetic causes of inherited diseases. Commercial NGS service providers in general not only provide raw genomic reads, but further deliver SNP calls to their clients. However, the question for the user arises whether to use the SNP data as is, or process the raw sequencing data further through more sophisticated SNP calling pipelines with more advanced algorithms.
View Article and Find Full Text PDFContext: In most ethnicities at least a quarter of all cases with diabetes is assumed to be undiagnosed. Screening for diabetes using saliva has been suggested as an effective approach to identify affected individuals.
Objective: The objective of the study was to identify a noninvasive metabolic marker of type 2 diabetes in saliva.
Background Advanced glycation end products (AGEs) have been shown to be a predictor of cardiovascular risk in Caucasian subjects. In this study we examine whether the existing reference values are useable for non-Caucasian ethnicities. Furthermore, we assessed whether gender and smoking affect AGEs.
View Article and Find Full Text PDF