Publications by authors named "Wade C McGregor"

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (K d) of 39 μM.

View Article and Find Full Text PDF

Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient's brain. Aβ is known to bind p75 neurotrophin receptor (p75(NTR)) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75(NTR) polyubiquitination, which promotes neuronal cell survival.

View Article and Find Full Text PDF

The Zn, Co, and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra of the N-acetyl-l-ornithine deacetylase (ArgE) from Escherichia coli, loaded with one or two equivalents of divalent metal ions (i.e., [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)], [Co(II)Co(II)(ArgE)], [Mn(II)_(ArgE)], and [Mn(II)Mn(II)(ArgE)]), were recorded.

View Article and Find Full Text PDF

The catalytically competent Mn(II)-loaded form of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli (ArgE) was characterized by kinetic, thermodynamic, and spectroscopic methods. Maximum N-acetyl-L-ornithine (NAO) hydrolytic activity was observed in the presence of one Mn(II) ion with k(cat) and K(m) values of 550 s(-1) and 0.8 mM, respectively, providing a catalytic efficiency (k(cat)/K(m)) of 6.

View Article and Find Full Text PDF

The catalytic and structural properties of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were investigated. On the basis of kinetic and ITC (isothermal titration calorimetry) data, Zn(II) binds to ArgE with Kd values that differ by approximately 20 times. Moreover, ArgE exhibits approximately 90% of its full catalytic activity upon addition of one metal ion.

View Article and Find Full Text PDF