Publications by authors named "Wade A Luhman"

Direct observation of an unexpected product from excited state fusion of two excited triplet states in platinum octaethylporphyrin is reported. Transient spectroscopy was used to identify the product as a metal centered (d, d) state that decays slowly compared with the rate of fusion. The reaction was demonstrated to be second order with a rate coefficient of k(TTF) = (5.

View Article and Find Full Text PDF

Connecting molecular structure and exciton diffusion length in rubrene derivatives demonstrates how the diffusion length of rubrene can be enhanced through targeted functionalization aiming to enhance self-Förster energy transfer. Functionalization adds steric bulk, forcing the molecules farther apart on average, and leading to increased photoluminescence efficiency. A diffusion length enhancement greater than 50% is realized over unsubstituted rubrene.

View Article and Find Full Text PDF

Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (L(D)) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer L(D) by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer.

View Article and Find Full Text PDF

A direct synthesis of new donor materials for organic photovoltaic cells is reported. Diaryindenotetracenes were synthesized utilizing a Kumada-Tamao-Corriu cross-coupling of peri-substituted tetrachlorotetracene with spontaneous indene annulation via C-H activation. Vacuum deposited planar heterojunction organic photovoltaic cells incorporating these molecules as electron donors exhibit power conversion efficiencies exceeding 1.

View Article and Find Full Text PDF