Publications by authors named "Wade A Braunecker"

Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H, temperatures where PLs lose their fluidity.

View Article and Find Full Text PDF

Free energy sampling, deep potential molecular dynamics, and characterizations provide insights into the impact of epoxide-functionalization on the hydrogen bonding and mobility of poly(ethylenimine), a promising CO sorbent. These findings rationalize the anti-degradation effects of epoxide functionalization and open up new avenues for designing more durable CO sorbents.

View Article and Find Full Text PDF

Materials that are capable of adsorbing and desorbing gases near ambient conditions are highly sought after for many applications in gas storage and separations. While the physisorption of typical gases to high surface area covalent organic frameworks (COFs) occurs through relatively weak intermolecular forces, the tunability of framework materials makes them promising candidates for tailoring gas sorption enthalpies. The incorporation of open Cu(I) sites into framework materials is a proven strategy to increase gas uptake closer to ambient conditions for gases that are capable of π-back-bonding with Cu.

View Article and Find Full Text PDF

A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied.

View Article and Find Full Text PDF

The relationship between the polymer network and electronic transport properties for stable radical polymeric materials has come under investigation owing to their potential application in electronic devices. For the radical polymer poly(2,2,6,6-tetramethylpiperidine-4-yl-1-oxyl methacrylate), it is unclear whether the radical packing is optimal for charge transport partially because the relationship between radical packing and molecular structure is not well-understood. Using the paramagnetic nitroxide radical as a probe of the polymer and synthetic techniques to control the radical concentration on the methyl methacrylate backbone, we investigate the dependence of radical concentration on molecular structure.

View Article and Find Full Text PDF

Stable nitroxide radical bearing organic polymer materials are attracting much attention for their application as next generation energy storage materials. A greater understanding of the inherent charge transfer mechanisms in such systems will ultimately be paramount to further advancements in the understanding of both intrafilm and interfacial ion- and electron-transfer reactions. This work is focused on advancing the fundamental understanding of these dynamic charge transfer properties by exploiting the fact that these species are efficient fluorescence quenchers.

View Article and Find Full Text PDF

The influence of backbone composition on the physical properties of donor-acceptor (D-A) copolymers composed of varying amounts of benzodithiophene (BDT) donor with the thienoisoindoledione (TID) acceptor is investigated. First, the synthesis of bis- and tris-BDT monomers is reported; these monomers are subsequently used in Stille copolymerizations to create well-defined alternating polymer structures with repeating (D-A), (D-D-A), and (D-D-D-A) units. For comparison, five semi-random D-A copolymers with a D:A ratio of 1.

View Article and Find Full Text PDF

Atom transfer radical polymerization (ATRP) generally requires a catalyst/initiator molar ratio of 0.1 to 1 and catalyst/monomer molar ratio of 0.001 to 0.

View Article and Find Full Text PDF

The concept of initiators for continuous activator regeneration (ICAR) in atom transfer radical polymerization (ATRP) is introduced, whereby a constant source of organic free radicals works to regenerate the Cu(I) activator, which is otherwise consumed in termination reactions when used at very low concentrations. With this technique, controlled synthesis of polystyrene and poly(methyl methacrylate) (Mw/Mn < 1.2) can be implemented with catalyst concentrations between 10 and 50 ppm, where its removal or recycling would be unwarranted for many applications.

View Article and Find Full Text PDF