We report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator.
View Article and Find Full Text PDFWe describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry.
View Article and Find Full Text PDFWe report on microwave-driven coherent electron transfer between two coupled donors embedded in a silicon nanowire. By increasing the microwave frequency we observe a transition from incoherent to coherent driving revealed by the emergence of a Landau-Zener-Stückelberg quantum interference pattern of the measured current through the donors. This interference pattern is fitted to extract characteristic parameters of the double-donor system.
View Article and Find Full Text PDFWith the development of single-atom transistors, consisting of single dopants, nanofabrication has reached an extreme level of miniaturization. Promising functionalities for future nanoelectronic devices are based on the possibility of coupling several of these dopants to each other. This already allowed to perform spectroscopy of the donor state by d.
View Article and Find Full Text PDFWe measure a large valley-orbit splitting for shallow isolated phosphorus donors in a silicon gated nanowire. This splitting is close to the bulk value and well above previous reports in silicon nanostructures. It was determined using a double dopant transport spectroscopy which eliminates artifacts induced by the environment.
View Article and Find Full Text PDFWe report the electronic transport on n-type silicon single electron transistors (SETs) fabricated in complementary metal oxide semiconductor (CMOS) technology. The n-type metal oxide silicon SETs (n-MOSSETs) are built within a pre-industrial fully depleted silicon on insulator (FDSOI) technology with a silicon thickness down to 10 nm on 200 mm wafers. The nominal channel size of 20 × 20 nm(2) is obtained by employing electron beam lithography for active and gate level patterning.
View Article and Find Full Text PDFOne consequence of the continued downward scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations in the number of these dopants are already a major issue in the microelectronics industry. Although single dopant signatures have been observed at low temperatures, the impact on transistor performance of a single dopant atom at room temperature is not well understood. Here, we show that a single arsenic dopant atom dramatically affects the off-state room-temperature behaviour of a short-channel field-effect transistor fabricated with standard microelectronics processes.
View Article and Find Full Text PDF