Publications by authors named "Waal P"

Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S.

View Article and Find Full Text PDF

The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various members.

View Article and Find Full Text PDF

Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems.

View Article and Find Full Text PDF

Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S.

View Article and Find Full Text PDF

The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation.

View Article and Find Full Text PDF

Plasmids pNP40 and pUC11B encode two prevalent yet divergent conjugation systems, which have been characterized in detail recently. Here, we report the elucidation of the putative adhesins of the pNP40 and pUC11B conjugation systems, encoded by and , respectively. Despite their significant sequence divergence, TraAd and TrsAd represent the most conserved component between the pNP40- and the pUC11B-encoded conjugation systems and share similar peptidoglycan-hydrolase domains.

View Article and Find Full Text PDF

Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) has a significant impact on the community as a whole with regard to quality of life and its relationship to allergic multi-morbidities. Appropriate diagnosis, treatment and review of the efficacy of interventions can ameliorate these effects. Yet, the importance of AR is often overlooked, and appropriate therapy is neglected.

View Article and Find Full Text PDF

Proteins often undergo large conformational changes when binding small molecules, but atomic-level descriptions of such events have been elusive. Here, we report unguided molecular dynamics simulations of Abl kinase binding to the cancer drug imatinib. In the simulations, imatinib first selectively engages Abl kinase in its autoinhibitory conformation.

View Article and Find Full Text PDF

Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11.

View Article and Find Full Text PDF

Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB-phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures.

View Article and Find Full Text PDF

Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in and has since been demonstrated in numerous species, including and . Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including spp.

View Article and Find Full Text PDF

The complete mitochondrial genome of Spirocerca lupi isolated from a dog in South Africa was sequenced using next generation sequencing (NGS) technology and the 12 protein coding genes along with the two rRNA genes were compared to 18 other nematode species as well as S. lupi from China. The mitochondrial genome of S.

View Article and Find Full Text PDF

-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages.

View Article and Find Full Text PDF

Purpose: Prolonged periods of intense cognitive activity lead to a state of mental exhaustion. While widespread strategies to recover from mental exhaustion (i.e.

View Article and Find Full Text PDF

Plasmid pNP40, which was first identified nearly 40 years ago in subsp. biovar diacetylactis DRC3, encodes functions such as heavy metal-, bacteriophage-, and nisin-resistance, as well as plasmid transfer ability by conjugation. Here, we report an optimized conjugation protocol for this plasmid, yielding a transfer frequency that is approximately 4,000-fold higher than those previously reported in literature, while we also observed high-frequency plasmid co-mobilization.

View Article and Find Full Text PDF

Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S.

View Article and Find Full Text PDF

The development of novel analgesics with improved safety profiles to combat the opioid epidemic represents a central question to G protein coupled receptor structural biology and pharmacology: What chemical features dictate G protein or β-arrestin signaling? Here we use adaptively biased molecular dynamics simulations to determine how fentanyl, a potent β-arrestin biased agonist, binds the μ-opioid receptor (μOR). The resulting fentanyl-bound pose provides rational insight into a wealth of historical structure-activity-relationship on its chemical scaffold. Following an in-silico derived hypothesis we found that fentanyl and the synthetic opioid peptide DAMGO require M153 to induce β-arrestin coupling, while M153 was dispensable for G protein coupling.

View Article and Find Full Text PDF

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response. The mechanism underlying promiscuous ligand recognition and activation of FPRs is not clear.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle.

View Article and Find Full Text PDF

Background: Efficient bioethanol production from hemicellulose feedstocks by requires xylose utilization. Whereas does not metabolize xylose, engineered strains that express xylose isomerase can metabolize xylose by converting it to xylulose. For this, the type II xylose isomerase from (PirXI) is used but the in vivo activity is rather low and very high levels of the enzyme are needed for xylose metabolism.

View Article and Find Full Text PDF

Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific N367I mutation in the endogenous chimeric Hxt36 hexose transporter.

View Article and Find Full Text PDF

Arrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are β-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs.

View Article and Find Full Text PDF

"Universal" synthetic antibody (sAB)-based fiducial marks have been generated by customized phage display selections to facilitate the rapid structure determination of G protein-coupled receptor (GPCR) signaling complexes by single-particle cryo-electron microscopy (SP cryo-EM). sABs were generated to the two major G protein subclasses: trimeric G and G, as well as mini-G, and were tested to ensure binding in the context of their cognate GPCRs. Epitope binning revealed that multiple distinct epitopes exist for each G(αβγ) protein.

View Article and Find Full Text PDF