Publications by authors named "WYMAN S"

Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and, in turn, activate bespoke cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but so far only receptors against cell-surface targets have approached clinical translation. To address this gap, here we adapt a receptor architecture called the synthetic intramembrane proteolysis receptor (SNIPR) for activation by soluble ligands.

View Article and Find Full Text PDF

Background: The possibility of association between SARS-CoV-2 genomic variation and immune evasion is not known among persons with Omicron variant SARS-CoV-2 infection.

Methods: In a retrospective cohort, using Poisson regression adjusting for sociodemographic variables and month of infection, we examined associations between individual non-lineage defining mutations and SARS-CoV-2 immunity status, defined as a) no prior recorded infection, b) not vaccinated but with at least one prior recorded infection, c) complete primary series vaccination, and/or d) primary series vaccination and ≥ 1 booster. We identified all non-synonymous single nucleotide polymorphisms (SNPs), insertions and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%.

View Article and Find Full Text PDF

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039.

View Article and Find Full Text PDF

Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing.

View Article and Find Full Text PDF

Unlabelled: Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039.

View Article and Find Full Text PDF

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for β-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters.

View Article and Find Full Text PDF
Article Synopsis
  • Late-onset Alzheimer's disease (LOAD) significantly impacts seniors, causing issues like memory loss and confusion, with Apolipoprotein-E (ApoE) recognized as a key risk factor for the condition.
  • The study hypothesizes that ApoE’s effects on LOAD risk might originate from changes in brain network architecture during neurodevelopment.
  • Using diffusion tensor imaging (DTI) and graph theory, researchers found that ApoE knockout mice exhibited distinct differences in brain connectivity compared to wild-type mice, suggesting ApoE plays a crucial role in how brain networks develop, which could influence vulnerability to LOAD.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the link between genomic variations in the Delta variant of SARS-CoV-2 and breakthrough infections in vaccinated individuals.
  • Researchers analyzed specific mutations in the virus's genome while considering those mutations that appeared frequently throughout the population.
  • Results showed that while there were certain mutations associated with a higher likelihood of breakthrough infections, their overall impact on predicting such infections was minimal.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a better way to change genes in human immune cells by using a special peptide that helps deliver CRISPR tools.
  • This new method is easier, cheaper, and less harmful compared to older methods like electroporation.
  • It allows for more successful gene editing and can help create improved T cells that fight tumors in mice.
View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to track and monitor SARS-CoV-2 infections among university students and employees to develop effective mitigation strategies during the pandemic.
  • Conducted from June to August 2020 at a California public university, 2,180 students and 738 employees participated, undergoing regular symptom and exposure surveys along with testing.
  • Results showed a low infection rate (2.6% among students, 0.4% among employees), with a significant outbreak linked to a super-spreader event in dorms, highlighting the importance of targeted testing and monitoring in preventing campus transmission.
View Article and Find Full Text PDF

Cassava () is a starchy root crop that supports over a billion people in tropical and subtropical regions of the world. This staple, however, produces the neurotoxin cyanide and requires processing for safe consumption. Excessive consumption of insufficiently processed cassava, in combination with protein-poor diets, can have neurodegenerative impacts.

View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb).

View Article and Find Full Text PDF

Background: A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction.

Results: An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs.

View Article and Find Full Text PDF

Naturally occurring point mutations in the promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC).

View Article and Find Full Text PDF

Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition.

View Article and Find Full Text PDF

Bicuspid aortic valve (BAV) with ~1%-2% prevalence is the most common congenital heart defect (CHD). It frequently results in valve disease and aorta dilation and is a major cause of adult cardiac surgery. BAV is genetically linked to rare left-heart obstructions (left ventricular outflow tract obstructions [LVOTOs]), including hypoplastic left heart syndrome (HLHS) and coarctation of the aorta (CoA).

View Article and Find Full Text PDF

Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in .

View Article and Find Full Text PDF

Although survival outcomes have improved dramatically over the last few decades in newly diagnosed myeloma patients, elderly patients have not yielded the same magnitude of benefit as evidenced by higher rates of reported myeloma-related deaths in patients over the age of 75. This is of particular importance given this cohort comprises a large proportion of myeloma patients with the median age of diagnosis being 70 years. One contributor to this discrepancy is reduced use of high-dose therapy and autologous stem cell transplantation (HDT/ASCT) in this population because of concerns for increased toxicity and safety.

View Article and Find Full Text PDF

Background: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease.

View Article and Find Full Text PDF

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.

View Article and Find Full Text PDF

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) cause the over-production of blood cells such as erythrocytes (polycythemia vera) or platelets (essential thrombocytosis). JAK2 V617F is the most prevalent somatic mutation in many MPNs, but previous modeling of this mutation in mice relied on transgenic overexpression and resulted in diverse phenotypes that were in some cases attributed to expression level. CRISPR-Cas9 engineering offers new possibilities to model and potentially cure genetically encoded disorders via precise modification of the endogenous locus in primary cells.

View Article and Find Full Text PDF

B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF