Publications by authors named "WW Mohn"

Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis.

View Article and Find Full Text PDF

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. GD02 was previously isolated for growth on acetovanillone.

View Article and Find Full Text PDF

Sponges are known for hosting diverse communities of microbial symbionts, but despite persistent interest in the sponge microbiome, most research has targeted marine sponges; freshwater sponges have been the focus of less than a dozen studies. Here, we used 16 S rRNA gene amplicon sequencing and shotgun metagenomics to characterize the microbiome of the freshwater sponge Ephydatia muelleri and identify potential indicators of sponge-microbe mutualism. Using samples collected from the Sooke, Nanaimo, and Cowichan Rivers on Vancouver Island, British Columbia, we show that the E.

View Article and Find Full Text PDF

Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). C-Lignin degradation was monitored using IR-GCMS of CO, and isotopic enrichment of DNA was measured with UHLPC-MS/MS.

View Article and Find Full Text PDF

The valorization of lignin, a major component of plant-derived biomass, is essential to sustainable biorefining. We identified the major monoaromatic compounds present in black liquor, a lignin-rich stream generated in the kraft pulping process, and investigated their bacterial transformation. Among tested solvents, acetone extracted the greatest amount of monoaromatic compounds from softwood black liquor, with guaiacol, vanillin, and acetovanillone, in an approximately 4:3:2 ratio, constituting ~90% of the total extracted monoaromatic content.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on understanding the bacterial and fungal microbiotas in rural Ghanaian children from birth to 5 years old, comparing them with their mothers' microbiotas.
  • Results showed that while bacterial communities changed in composition and diversity as children aged, the fungal microbiota remained stable; mothers also experienced a significant shift in their microbiota after giving birth.
  • The findings suggest that the differences in how infants and mothers share bacterial and fungal microbiotas could have important implications for health, indicating a need for more research on these dynamics.
View Article and Find Full Text PDF

Bile salts are amphiphilic steroids with digestive functions in vertebrates. Upon excretion, bile salts are degraded by environmental bacteria. Degradation of the bile salt steroid skeleton resembles the well-studied pathway for other steroids, like testosterone, while specific differences occur during side chain degradation and the initiating transformations of the steroid skeleton.

View Article and Find Full Text PDF

The microbiome plays a fundamental role in how the immune system develops and how inflammatory responses are shaped and regulated. The "gut-lung axis" is a relatively new term that highlights a crucial biological crosstalk between the intestinal microbiome and lung. A growing body of literature suggests that dysbiosis, perturbation of the gut microbiome, is a driving force behind the development, and severity of allergic asthma.

View Article and Find Full Text PDF

The gut microbiome is a well-recognized modulator of host immunity, and its compositions differ between geographically separated human populations. Systemic innate immune responses to microbial derivatives also differ between geographically distinct human populations. However, the potential role of the microbiome in mediating geographically varied immune responses is unexplored.

View Article and Find Full Text PDF

Background: The human skin microbiome is highly personalized, depending on, for example, body site, age, gender, and lifestyle factors. The temporal stability of an individual's skin microbiome-its resiliency and robustness over months and years-is also a personalized feature of the microbiome. The authors measured the temporal stability of the facial skin microbiome in a large cohort of subjects.

View Article and Find Full Text PDF

Background: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts.

Methods: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional vaccine design has traditionally relied on trial and error, but major diseases like tuberculosis and HIV still lack effective vaccines due to gaps in our understanding of immune responses at the molecular level.
  • Recent advancements in systems biology provide tools for in-depth analysis, but effective studies require intensive blood and tissue sampling from humans, which have yet to be fully developed and validated.
  • In a study of 15 healthy adults immunized with the hepatitis B vaccine, extensive sampling allowed for comprehensive immune response analysis, demonstrating the feasibility of such studies and the potential for improved vaccine design through data integration.
View Article and Find Full Text PDF

Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol.

View Article and Find Full Text PDF

In both high- and low-income countries, HIV-negative children born to HIV-positive mothers (HIV exposed, uninfected [HEU]) are more susceptible to severe infection than HIV-unexposed, uninfected (HUU) children, with altered innate immunity hypothesized to be a cause. Both the gut microbiome and systemic innate immunity differ across biogeographically distinct settings, and the two are known to influence each other. And although the gut microbiome is influenced by HIV infection and may contribute to altered immunity, the biogeography of immune-microbiome correlations among HEU children have not been investigated.

View Article and Find Full Text PDF

Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the -demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains EP4 and RHA1 both utilized alkylguaiacols as sole growth substrates.

View Article and Find Full Text PDF

Background: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility.

View Article and Find Full Text PDF

Steryl esters (SEs) are important storage compounds in many eukaryotes and are often prominent components of intracellular lipid droplets. Here, we demonstrate that selected - and growing on sterols are also able to synthesize SEs and to sequester them in cytoplasmic lipid droplets. We found cholesteryl ester (CE) formation in members of the actinobacterial genera , , and , as well as several members of the proteobacterial order.

View Article and Find Full Text PDF

The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and RHA1.

View Article and Find Full Text PDF

Background: Allergic disease is the most frequent chronic health issue in children and has been linked to early-life gut microbiome dysbiosis. Many lines of evidence suggest that microbially derived short-chain fatty acids, and particularly butyrate, can promote immune tolerance.

Objective: We sought to determine whether bacterial butyrate production in the gut during early infancy is protective against the development of atopic disease in children.

View Article and Find Full Text PDF

Despite recognition that biogeography and individuality shape the function and composition of the human skin microbiome, we know little about how extrinsic and intrinsic host factors influence its composition. To explore the contributions of these factors to skin microbiome variation, we profiled the bacterial microbiomes of 495 North American subjects (ages, 9 to 78 years) at four skin surfaces plus the oral epithelium using 16S rRNA gene amplicon sequencing. We collected subject metadata, including host physiological parameters, through standardized questionnaires and noninvasive biophysical methods.

View Article and Find Full Text PDF

The cytokine IL-22 is rapidly induced at barrier surfaces where it regulates host-protective antimicrobial immunity and tissue repair but can also enhance disease severity in some chronic inflammatory settings. Using the chronic gastroenteritis model, Ab-mediated neutralization of IL-22 impaired intestinal epithelial barrier integrity and, consequently, exaggerated expression of proinflammatory cytokines. As disease normally resolved, neutralization of IL-22 caused luminal narrowing of the cecum-a feature reminiscent of fibrotic strictures seen in Crohn disease patients.

View Article and Find Full Text PDF

The intestinal microbiota plays an important role in development of the immune system and regulation of immune responses. This review summarizes the association between the intestinal microbiota and the development of allergic sensitization, eczema, and asthma in neonates and children. Overall, a greater relative abundance of Bacteroidaceae, Clostridiaceae, and Enterobacteriaceae and a lower relative abundance of Bifidobacteriaceae and Lactobacillaceae is associated with the development of allergic sensitization, eczema, or asthma.

View Article and Find Full Text PDF

The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries.

View Article and Find Full Text PDF

Delignification, or lignin-modification, facilitates the decomposition of lignocellulose in woody plant biomass. The extant diversity of lignin-degrading bacteria and fungi is underestimated by culture-dependent methods, limiting our understanding of the functional and ecological traits of decomposers populations. Here, we describe the use of stable isotope probing (SIP) coupled with amplicon and shotgun metagenomics to identify and characterize the functional attributes of lignin, cellulose and hemicellulose-degrading fungi and bacteria in coniferous forest soils from across North America.

View Article and Find Full Text PDF

Forest ecosystems are critical to global biogeochemical cycles but under pressure from harvesting and climate change. We investigated the effects of organic matter (OM) removal during forest harvesting on the genetic potential of soil communities for biomass decomposition and nitrogen cycling in five ecozones across North America. We analyzed 107 samples, representing four treatments with varied levels of OM removal, at Long-Term Soil Productivity Study sites.

View Article and Find Full Text PDF