Successful operation of ITER requires control of magnetic instabilities including neoclassical tearing modes (NTMs) that can degrade confinement and lead to disruption. Low latency detection by electron cyclotron emission (ECE) diagnostics has been demonstrated in a few current experiments. Using a synthetic diagnostic, we demonstrate low latency NTM detection for ITER with plasmas described by ITER IMAS database scenarios and with realistic limitations imposed on the instrumentation by these high temperature scenarios.
View Article and Find Full Text PDFCOMPASS Upgrade is a medium size and high field tokamak that is capable of addressing key challenges for reactor grade tokamaks, including power exhaust and advanced confinement scenarios. Electron cyclotron emission will be available among the first diagnostics to provide measurements of high spatial and temporal resolution of electron temperature profiles and electron temperature fluctuation profiles through a radial view. A separate oblique view at 12° from normal will be utilized to study non-thermal electrons.
View Article and Find Full Text PDFUtilizing variable-frequency channels, e.g., yttrium iron garnet (YIG) bandpass filters, in the intermediate frequency (IF) section of an electron cyclotron emission (ECE) radiometer facilitates flexibility in the volume viewed by the ECE channels as well as high resolution electron temperature and temperature fluctuation measurements in tokamaks.
View Article and Find Full Text PDFThe electron cyclotron emission (ECE) diagnostic on the experimental advanced superconducting tokamak (EAST) was upgraded recently to provide electron temperature profile measurement with wider radial coverage and better precision. The lower limit of the ECE detection frequency band was extended from 104 GHz to 97 GHz by adding a new 8-channel heterodyne radiometer, which ensures capability for the measurement of the second harmonic ECE with toroidal magnetic field down to 1.75 T.
View Article and Find Full Text PDFElectron cyclotron emission (ECE) diagnostics that use variable location channels based on yttrium iron garnet (YIG) bandpass filters improve the precision and the efficiency of measurements of electron temperature ( ) profiles and fluctuations (δ ). These variable frequency filters were substituted for fixed frequency filters in the intermediate frequency section to achieve the required higher resolution over a target radial range, just before the experiment. Here, we present the proof-of-principle for high temporal resolution measurement of the electron temperature gradient, via real-time slewing of a YIG filter for relocation of an ECE channel during a long pulse.
View Article and Find Full Text PDFThe lithium beam is an effective diagnostic tool for investigation of stability and particle transport in the pedestal. It was used successfully to measure edge current density on DIII-D, achieving qualitative agreement with neoclassical models. Electron density profiles were also measured.
View Article and Find Full Text PDFThe motional Stark effect (MSE) diagnostic is applied to measure the safety factor q and current density profile of a tokamak device, which are important parameters in realizing the high-performance and long-pulse steady state of a tokamak. A single-channel MSE diagnostic based on dual photoelastic modulators, whose sightline meets with the neutral beam injection at a major radius of R = 2.12 m, has been built for the D window of the Experimental Advanced Superconducting Tokamak (EAST).
View Article and Find Full Text PDFCalibration is a crucial procedure in electron temperature (T) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT/T is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel.
View Article and Find Full Text PDFRev Sci Instrum
November 2016
On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T plasmas.
View Article and Find Full Text PDFMeasurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required.
View Article and Find Full Text PDFRev Sci Instrum
October 2012
To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.
View Article and Find Full Text PDFA novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels.
View Article and Find Full Text PDFRev Sci Instrum
October 2008
This diagnostic measures temperature, density, and rotation for the fully stripped boron ion between the pedestal top and the plasma core with resolution consistent with the profile gradients. The diagnostic neutral beam used for the measurements generates a 50 keV, 6 A hydrogen beam. The optical systems provide views in both poloidal and toroidal directions.
View Article and Find Full Text PDFCharge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known.
View Article and Find Full Text PDFWe present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment.
View Article and Find Full Text PDF