Publications by authors named "WF Bottke"

The asteroid (142) Polana is classified as a B-type asteroid located in the inner Main Belt. This asteroid is the parent of the New Polana family, which has been proposed to be the likely source of primitive near-Earth asteroids such as the B-type asteroid (101955) Bennu. To investigate the compositional correlation between Polana and Bennu at the 3 µm band and their aqueous alteration histories, we analyzed the spectra of Polana in the ~ 2.

View Article and Find Full Text PDF

Rubble pile asteroids are widely understood to be composed of reaccumulated debris following a catastrophic collision between asteroids in the main asteroid belt, where each disruption can make a family of new asteroids. Near-Earth asteroids Ryugu and Bennu have been linked to collisional families in the main asteroid belt, but surface age analyses of each asteroid suggest these bodies are substantially younger than their putative families. Here we show, through a coupled collisional and dynamical evolution of members of these families, that neither asteroid was likely to have been created at the same time as the original family breakups, but rather are likely remnants of later disruptions of original family members, making them second, or later, generation remnants.

View Article and Find Full Text PDF

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect) to be a notable factor in their evolution. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum is typical of bodies in this part of the main belt.

View Article and Find Full Text PDF

The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs.

View Article and Find Full Text PDF

Spacecraft missions have observed regolith blankets of unconsolidated subcentimetre particles on stony asteroids. Telescopic data have suggested the presence of regolith blankets also on carbonaceous asteroids, including (101955) Bennu and (162173) Ryugu. However, despite observations of processes that are capable of comminuting boulders into unconsolidated materials, such as meteoroid bombardment and thermal cracking, Bennu and Ryugu lack extensive areas covered in subcentimetre particles.

View Article and Find Full Text PDF

An asteroid's history is determined in large part by its strength against collisions with other objects (impact strength). Laboratory experiments on centimetre-scale meteorites have been extrapolated and buttressed with numerical simulations to derive the impact strength at the asteroid scale. In situ evidence of impacts on boulders on airless planetary bodies has come from Apollo lunar samples and images of the asteroid (25143) Itokawa.

View Article and Find Full Text PDF

Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.

View Article and Find Full Text PDF

Many boulders on (101955) Bennu, a near-Earth rubble pile asteroid, show signs of in situ disaggregation and exfoliation, indicating that thermal fatigue plays an important role in its landscape evolution. Observations of particle ejections from its surface also show it to be an active asteroid, though the driving mechanism of these events is yet to be determined. Exfoliation has been shown to mobilize disaggregated particles in terrestrial environments, suggesting that it may be capable of ejecting material from Bennu's surface.

View Article and Find Full Text PDF

Asteroid (101955) Bennu, a near-Earth object with a primitive carbonaceous chondrite-like composition, was observed by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft to undergo multiple particle ejection events near perihelion between December 2018 and February 2019. The three largest events observed during this period, which all occurred 3.5 to 6 hr after local noon, placed numerous particles <10 cm on temporary orbits around Bennu.

View Article and Find Full Text PDF

Modern meteorite classification schemes assume that no single planetary body could be source of both unmelted (chondritic) and melted (achondritic) meteorites. This dichotomy is a natural outcome of formation models assuming that planetesimal accretion occurred nearly instantaneously. However, it has recently been proposed that the accretion of many planetesimals lasted over ≳1 million years (Ma).

View Article and Find Full Text PDF

Some years ago, the consensus was that asteroid (16) Psyche was almost entirely metal. New data on density, radar properties, and spectral signatures indicate that the asteroid is something perhaps even more enigmatic: a mixed metal and silicate world. Here we combine observations of Psyche with data from meteorites and models for planetesimal formation to produce the best current hypotheses for Psyche's properties and provenance.

View Article and Find Full Text PDF

Rock breakdown due to diurnal thermal cycling has been hypothesized to drive boulder degradation and regolith production on airless bodies. Numerous studies have invoked its importance in driving landscape evolution, yet morphological features produced by thermal fracture processes have never been definitively observed on an airless body, or any surface where other weathering mechanisms may be ruled out. The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission provides an opportunity to search for evidence of thermal breakdown and assess its significance on asteroid surfaces.

View Article and Find Full Text PDF

Asteroid shapes and hydration levels can serve as tracers of their history and origin. For instance, the asteroids (162173) Ryugu and (101955) Bennu have an oblate spheroidal shape with a pronounced equator, but contain different surface hydration levels. Here we show, through numerical simulations of large asteroid disruptions, that oblate spheroids, some of which have a pronounced equator defining a spinning top shape, can form directly through gravitational reaccumulation.

View Article and Find Full Text PDF

Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft.

View Article and Find Full Text PDF

The top-shape morphology of asteroid (101955) Bennu is commonly found among fast-spinning asteroids and binary asteroid primaries, and might have contributed significantly to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of OSIRIS-REx, we find a significant transition in Bennu's surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface.

View Article and Find Full Text PDF

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth. Bennu is a low-albedo B-type asteroid that has been linked to organic-rich hydrated carbonaceous chondrites. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes.

View Article and Find Full Text PDF

The terrestrial impact crater record is commonly assumed to be biased, with erosion thought to eliminate older craters, even on stable terrains. Given that the same projectile population strikes Earth and the Moon, terrestrial selection effects can be quantified by using a method to date lunar craters with diameters greater than 10 kilometers and younger than 1 billion years. We found that the impact rate increased by a factor of 2.

View Article and Find Full Text PDF

The Great Unconformity, a profound gap in Earth's stratigraphic record often evident below the base of the Cambrian system, has remained among the most enigmatic field observations in Earth science for over a century. While long associated directly or indirectly with the occurrence of the earliest complex animal fossils, a conclusive explanation for the formation and global extent of the Great Unconformity has remained elusive. Here we show that the Great Unconformity is associated with a set of large global oxygen and hafnium isotope excursions in magmatic zircon that suggest a late Neoproterozoic crustal erosion and sediment subduction event of unprecedented scale.

View Article and Find Full Text PDF

Most near-Earth objects came from the asteroid belt and drifted via non-gravitational thermal forces into resonant escape routes that, in turn, pushed them onto planet-crossing orbits. Models predict that numerous asteroids should be found on orbits that closely approach the Sun, but few have been seen. In addition, even though the near-Earth-object population in general is an even mix of low-albedo (less than ten per cent of incident radiation is reflected) and high-albedo (more than ten per cent of incident radiation is reflected) asteroids, the characterized asteroids near the Sun typically have high albedos.

View Article and Find Full Text PDF

Building the terrestrial planets has been a challenge for planet formation models. In particular, classical theories have been unable to reproduce the small mass of Mars and instead predict that a planet near 1.5 astronomical units (AU) should roughly be the same mass as Earth.

View Article and Find Full Text PDF

The inner solar system's biggest and most recent known collision was the Moon-forming giant impact between a large protoplanet and proto-Earth. Not only did it create a disk near Earth that formed the Moon, it also ejected several percent of an Earth mass out of the Earth-Moon system. Here, we argue that numerous kilometer-sized ejecta fragments from that event struck main-belt asteroids at velocities exceeding 10 kilometers per second, enough to heat and degas target rock.

View Article and Find Full Text PDF

The history of the Hadean Earth (∼4.0-4.5 billion years ago) is poorly understood because few known rocks are older than ∼3.

View Article and Find Full Text PDF

The most heavily cratered terrains on Mercury have been estimated to be about 4 billion years (Gyr) old, but this was based on images of only about 45 per cent of the surface; even older regions could have existed in the unobserved portion. These terrains have a lower density of craters less than 100 km in diameter than does the Moon, an observation attributed to preferential resurfacing on Mercury. Here we report global crater statistics of Mercury's most heavily cratered terrains on the entire surface.

View Article and Find Full Text PDF

The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.

View Article and Find Full Text PDF

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.

View Article and Find Full Text PDF