Publications by authors named "WEDLER H"

People with blindness have limited access to the high-resolution graphical data and imagery of science. Here, a lithophane codex is reported. Its pages display tactile and optical readouts for universal visualization of data by persons with or without eyesight.

View Article and Find Full Text PDF

People who are blind do not have access to graphical data and imagery produced by science. This exclusion complicates learning and data sharing between sighted and blind persons. Because blind people use tactile senses to visualize data (and sighted people use eyesight), a single data format that can be easily visualized by both is needed.

View Article and Find Full Text PDF

Second order Jahn-Teller (SOJT) effects arise from interactions between filled and empty molecular orbitals of like symmetry. These interactions often lead to structural distortions whose extent is inversely proportional to the energy difference between the interacting orbitals. The main objectives of the work described here are (1) the calculation (using density functional theory methods) of the energies of the valence molecular orbitals in the species EH3 (E = N, P, As or Sb), HEEH (E = C, Si, Ge or Sn), and H2EEH2, (E = C, Si, Ge or Sn) and (2) the correlation of these energies with barriers for planarization or linearization.

View Article and Find Full Text PDF

Oxidopyrylium-alkene [5 + 2] cycloaddition conjugate addition cascade (C) sequences are described. Intramolecular cycloadditions involving terminal alkenes, enals, and enones were investigated. Substrates with tethers of varying lengths delivered five- and six-membered carbocycles and heterocycles thus demonstrating the scope and limitation of the cycloaddition-conjugate addition cascade.

View Article and Find Full Text PDF

Single cell genome analysis methods are powerful tools to define features of single cells and to identify differences between them. Since the DNA amount of a single cell is very limited, cellular DNA usually needs to be amplified by whole-genome amplification before being subjected to further analysis. A single nucleus only contains two haploid genomes.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations are used to probe the validity of mechanistic proposals for the conversion of isozizanoic acid to 12-norisoziza-5-ene, a reaction that occurs during steam distillation of vetiver oil. While this conversion corresponds overall to a simple decarboxylation, a multistep mechanism involving carbocation intermediates is supported by the computational results.

View Article and Find Full Text PDF

Quantum chemical calculations coupled to experiments were used to predict covalent hydration propensities of biologically relevant α-ketoamides. Experimentally determined hydration equilibrium constants for related ketones and aldehydes were compared to computationally determined values to develop a method for predicting hydration equilibrium constants. This method was used on six newly synthesized α-ketoamides to experimentally verify computational predictions.

View Article and Find Full Text PDF

Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation.

View Article and Find Full Text PDF

Quantum chemical calculations on the isomerization of 24-methylenecycloartanol are described. An energetically viable mechanism, with a rate-determining protonation step, is proposed. This rearrangement may find applicability in tests for determining if an olive oil has been refined.

View Article and Find Full Text PDF

An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts.

View Article and Find Full Text PDF

In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them.

View Article and Find Full Text PDF

Cortical function is impaired in various disorders of the central nervous system including Alzheimer's disease, autism and schizophrenia. Some of these disorders are speculated to be associated with insults in early brain development. Pericytes have been shown to regulate neurovascular integrity in development, health and disease.

View Article and Find Full Text PDF

Background: With the completion of the human genome sequence the functional analysis and characterization of the encoded proteins has become the next urging challenge in the post-genome era. The lack of comprehensive ORFeome resources has thus far hampered systematic applications by protein gain-of-function analysis. Gene and ORF coverage with full-length ORF clones thus needs to be extended.

View Article and Find Full Text PDF

The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A.

View Article and Find Full Text PDF

Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function.

View Article and Find Full Text PDF

The methylotrophic yeast Hansenula polymorpha is a recognised model system for investigation of peroxisomal function, special metabolic pathways like methanol metabolism, of nitrate assimilation or thermostability. Strain RB11, an odc1 derivative of the particular H. polymorpha isolate CBS4732 (synonymous to ATCC34438, NRRL-Y-5445, CCY38-22-2) has been developed as a platform for heterologous gene expression.

View Article and Find Full Text PDF

Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.

View Article and Find Full Text PDF

We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element.

View Article and Find Full Text PDF

The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome.

View Article and Find Full Text PDF

Arabidopsis thaliana has a relatively small genome of approximately 130 Mb containing about 10% repetitive DNA. Genome sequencing studies reveal a gene-rich genome, predicted to contain approximately 25000 genes spaced on average every 4.5 kb.

View Article and Find Full Text PDF

The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4.

View Article and Find Full Text PDF

Saccharomyces cerevisiae yeast cells secrete extracellularly low amounts of a few proteins. The reasons for retardation of secreted proteins on the cell surface remain obscure. We describe here a mutant able to export enhanced amount of proteins.

View Article and Find Full Text PDF

Three characteristic developments in modern western societies usually are considered to be independent variables in the ethical discussion:1. An explosion-like increase in medical and social expenditures following a rapid multiplication of old and multiply disabled people in this century. 2.

View Article and Find Full Text PDF