Publications by authors named "WALLIS O"

Background: Patients with multiple sclerosis (MS) often experience high levels of anxiety, specifically about the (unpredictable) future related to MS. Worries about physical and cognitive declines can cause frightening mental representations of future 'worst-case scenarios'. Evidence of the applicability of eye movement desensitization reprocessing (EMDR) using flash-forward on anxiety is growing.

View Article and Find Full Text PDF

Objective: The authors evaluated the cognitive performance of patients with low-grade glioma (LGG) before and after surgery, and specifically investigated 1) the effects of hemispheric tumor location and 2) the type of surgery (either with or without intraoperative stimulation mapping [ISM]).

Methods: Patients underwent neuropsychological assessment 1 day before (T0) and 3 months after (T3) surgery. ISM targeted motor and/or language functions, but no other cognitive functions.

View Article and Find Full Text PDF

Objectives: Multiple sclerosis (MS) patients suffer from high levels of anxiety. However, it is unclear which factors are related to anxiety, since study results are inconsistent, and the associated factors have not been examined comprehensively. In this study, we investigated the demographic, disease-related and psychological factors associated with anxiety in MS patients.

View Article and Find Full Text PDF

The GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5' and 3' flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5' flanking sequence and 1596 nt of 3' flanking sequence that are "unique"; between these are eight repeat units, including the eight GH genes/pseudogenes.

View Article and Find Full Text PDF

In mammals, pituitary growth hormone (GH) is usually encoded by a single gene, but in some caprine ruminants there are two GH genes, and higher primates have a cluster of at least 5 GH-like genes. We have previously shown that in several artiodactyls (chevrotain, giraffe, and hippopotamus) there are two GH gene sequences, differing by 5-21 nucleotides (nt), but whether these arise from two distinct gene loci is unclear. We report here that in the red deer (Cervus elaphus) also there are two main GH gene sequences (designated A and B) differing at about 23 nt.

View Article and Find Full Text PDF

In mammals growth hormone (GH) is generally a strongly conserved protein, reflecting a slow rate of molecular evolution. However, during primate and artiodactyl evolution episodes of rapid change occurred, so that the GHs of higher primates and ruminants differ markedly from those of other mammals. To extend knowledge of GH evolution in Cetartiodactyla (Artiodactyla plus Cetacea) we have previously characterized GH genes from several members of this group, including the common dolphin.

View Article and Find Full Text PDF

Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus).

View Article and Find Full Text PDF

The sequence of growth hormone (GH) is generally strongly conserved in mammals, but episodes of rapid change occurred during the evolution of primates and artiodactyls, when the rate of GH evolution apparently increased substantially. As a result the sequences of higher primate and ruminant GHs differ markedly from sequences of other mammalian GHs. In order to increase knowledge of GH evolution in Cetartiodactyla (Artiodactyla plus Cetacea) we have cloned and characterized GH genes from camel (Camelus dromedarius), hippopotamus (Hippopotamus amphibius), and giraffe (Giraffa camelopardalis), using genomic DNA and a polymerase chain reaction technique.

View Article and Find Full Text PDF

In most mammals pituitary GH is encoded by a single gene with no close relatives. However, in man the GH gene has been shown to be one of a cluster of five closely related genes, four of which are expressed in the placenta. Rhesus monkey also expresses at least five closely related GH-like genes, although the genomic organisation of these has not been fully reported.

View Article and Find Full Text PDF

In mammals the sequence of pituitary growth hormone (GH) is generally strongly conserved, indicating a slow basal rate of molecular evolution. However, on two occasions, during the evolution of primates and that of cetartiodactyls, the rate of evolution has increased dramatically (25 to 50-fold) so that the sequences of human and ruminant GHs differ markedly from those of other mammalian GHs. To define further the burst of GH evolution that occurred in cetartiodactyls, the GH gene of the chevrotain (Tragulus javanicus) has been cloned and characterized by use of genomic DNA and a polymerase chain reaction technique.

View Article and Find Full Text PDF

Pituitary growth hormone (GH), like several other protein hormones, shows an unusual episodic pattern of molecular evolution in which sustained bursts of rapid change are imposed on long periods of very slow evolution (near-stasis). A marked period of rapid change occurred in the evolution of GH in primates or a primate ancestor, and gave rise to the species specificity that is characteristic of human GH. We have defined more precisely the position of this burst by cloning and sequencing the GH genes for a prosimian, the slow loris (Nycticebus pygmaeus) and a New World monkey, marmoset (Callithrix jacchus).

View Article and Find Full Text PDF

A number of analogues of ovine growth hormone (GH), in which regions of the hormone had been deleted, were produced by site-directed mutagenesis, and characterised by radioimmunoassays and radioreceptor assays. These analogues were based on a previously described variant (oGH1) in which an 8-residue extension replaces the N-terminal alanine of pituitary-derived ovine GH. Three analogues with deletions near the N-terminus were studied, with shorter extensions of 7 or 1-2 residues (oGH14, oGH5) or with the N-terminal sequence Ala-Phe-Pro- of pituitary-derived ovine GH replaced by Thr-Met-Ile-Thr- (oGH11).

View Article and Find Full Text PDF

Sequential block copolymers consisting of tandem repetition of amino acids have been constructed and genetically produced based on the natural repeating structures of silk and elastin protein. Combinations of silklike and elastinlike amino acid sequence blocks in a high molecular weight protein polymer are used to confer properties similar to those observed with hard block and soft block segmented polyurethanes. A certain subset of these silk-elastinlike protein compositions, termed ProLastins, will undergo an irreversible solution to gel transition in physiological, aqueous solution.

View Article and Find Full Text PDF

In mammals the structure of pituitary GH is generally strongly conserved, indicating a slow basal rate of molecular evolution. However, on two occasions, during the evolution of primates and of artiodactyls, the rate of evolution has increased dramatically (25- to 50-fold) so that the sequences of human and ruminant GHs differ markedly from those of other mammalian GHs. In order to define further the burst of GH evolution that occurred in artiodactyls we have cloned and characterised the GH gene of red deer (Cervus elaphus) using genomic DNA and a polymerase chain reaction technique.

View Article and Find Full Text PDF

The gene encoding growth hormone (GH) has been cloned from a rabbit genomic library, and its sequence has been determined. The rabbit GH gene is similar to other mammalian GH, being comprised of five exons and four introns. As in rodents and artiodactyls, the rabbit GH occurs as a single gene, with no evidence for a cluster of GH-like genes, as is found in primates.

View Article and Find Full Text PDF

The expression levels of coding sequences for pituitary growth hormone, introduced into Escherichia coli by genetic manipulation techniques, vary markedly according to the precise sequence introduced. In order to understand the basis of this variation more fully, we have studied the relationship between the level of expression in E. coli of a series of ovine growth hormone variants and the nucleotide sequences coding for their N-terminal regions.

View Article and Find Full Text PDF

125I-Labelled polypeptide hormones have been extremely valuable for radioimmunoassays, receptor-binding studies and investigation of the processing and metabolism of hormones. However, such externally labelled material has the disadvantage that addition of one or more iodine atoms may alter the properties of the polypeptide. Furthermore, for studies on hormone metabolism and processing, the label may become separated from the hormone or its main breakdown products.

View Article and Find Full Text PDF

An Escherichia coli JM109 clone containing a plasmid, pOGHe101, based on pUC8 and the ovine GH (oGH) cDNA sequence, showed very high expression (up to 25% of total cell protein) of an oGH analogue (oGH1) after induction. oGH1 was found in the particulate fraction of induced bacteria, where electron-dense granules could be seen by electron microscopy. A simple method for the purification of oGH1 is described.

View Article and Find Full Text PDF

cDNA prepared from mRNA from ovine anterior pituitary glands was cloned in Escherichia coli and the sequence of a clone encoding the full coding sequence of ovine pregrowth hormone (preGH) determined. The predicted sequence for ovine GH agrees with that determined previously on the protein, except that residue 99 is asparagine rather than aspartic acid. The cDNA sequence also accords with one of the two genomic sequences for the ovine GH gene that have been reported.

View Article and Find Full Text PDF

A method for the production of plasmids giving different levels of expression of ovine growth hormone (oGH) variants in E. coli is described. The cDNA sequence coding for mature oGH was inserted into the multiple cloning site of plasmid pUC8 and random deletions were then introduced 3' to the initiation codon.

View Article and Find Full Text PDF

(1R)-2-Amino[1-2H1]ethanol and (1S,2RS)-2-amino[1,2-2H2]ethanols have been synthesised by decarboxylation of (2S,3R)-[3-2H1]serine and (2S,3S)-[2,3-2H2]serine respectively. The stereochemical integrity of these labelled 2-aminoethanols has been ascertained from the 1H-NMR spectra of their N,O-dicamphanoyl derivatives. This assay has also been used to confirm that samples of (2R)- and (2S)-2-amino [2-2H1]ethanols prepared from (2R)- and (2S)-[2-2H1]glycines are stereochemically pure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8j5hrgbf1mt59m6ogm9gijo5q8p964po): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once