Publications by authors named "W-H Zheng"

Background: Pulmonary hypertension (PH) is associated with endothelial dysfunction. However, the cause of endothelial dysfunction and its impact on PH remain incompletely understood. We aimed to investigate whether the hypoxia-inducible FUNDC1 (FUN14 domain-containing 1)-dependent mitophagy pathway underlies PH pathogenesis and progression.

View Article and Find Full Text PDF

Rationale And Objectives: Accurate prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for guiding treatment. This study evaluates and compares the performance of clinicoradiologic, traditional radiomics, deep-learning radiomics, feature fusion, and decision fusion models based on multi-region MR habitat imaging using six machine-learning classifiers.

Materials And Methods: We retrospectively included 300 HCC patients.

View Article and Find Full Text PDF

Background: Cardiocerebral infarction (CCI), which is concomitant with acute myocardial infarction (AMI) and acute ischemic stroke (AIS), is a rare but severe presentation. However, there are few data on CCI, and the treatment options are uncertain. We investigated the characteristics and outcomes of CCI compared with AMI or AIS alone.

View Article and Find Full Text PDF

P2Y receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y receptor inhibitor, has submitted a new drug marketing application to the United States Food and Drug Administration. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) and spinal degenerative disorders (SDD) are common diseases that frequently coexist. However, both traditional observational studies and recent Mendelian randomization (MR) studies have demonstrated conflicting evidence on the association between T2DM and SDD. This comparative study explored and compared the association between T2DM and SDD using observational and MR analyses.

View Article and Find Full Text PDF

The development of novel materials for electrodes with high energy densities is essential to the advancement of energy storage technologies. In this study, N-doped layered porous carbon with ZIF-67-derived binary CoFeO-Fe particles was successfully fabricated by the pyrolysis of an Fe-based chitosan (CS) hydrogel mixed with ZIF-67 particles. Various characterization techniques were employed to assess the performance of the prepared porous CoFeO-Fe@NC composite.

View Article and Find Full Text PDF

Optimizing the pore structure and its interaction with the electrolytes was vital for enhancing the performance of supercapacitors based on the electrical double layer mechanism. In this study, graded porous carbon material (STP) with outstanding properties was prepared by adjusting the activation temperature and KOH dosage in the microwave pyrolysis process of sargassum thunbergii. The results demonstrated that better electrochemical performance was obtained when 1 M NaNO was used as electrolyte and STP-800-3 was employed as electrode material, attributed to its excellent specific surface area (SSA) of 2011.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiomyocyte differentiation is regulated by the modulation of BMP/Wnt signaling pathways, with current research focused on understanding how these pathways remove regulatory obstacles during development.* -
  • A genome-wide CRISPR screen identified NF2 as a critical factor for early cardiomyocyte specification, demonstrating that NF2 is essential for maintaining cardiomyocyte identity during differentiation.* -
  • The study revealed that NF2 works with AMOT to inhibit YAP activation during mesendoderm formation, highlighting their joint role in clearing regulatory barriers necessary for proper cardiac lineage development.*
View Article and Find Full Text PDF

Background: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release.

Methods: and mice, bone marrow transplantation, and AAV (adeno-associated virus serotype 9)-F4/80-shGSDMD (shRNA-GSDMD) were used to examine the effect of macrophage-derived GSDMD on atherosclerosis.

View Article and Find Full Text PDF

Metal organic frameworks (MOFs) with binder-free electrodes have shown promise for portable electrochemical energy storage applications. However, their low specific capacitance and challenges associated with the attachment of active materials to the substrate constrain their practical utility. In this research, we prepared a CoNi-MOF/CC electrode by growth of CoNi-MOF on an HO-pretreated carbon cloth (CC) without using any binder.

View Article and Find Full Text PDF

Alkaline Al-air batteries (AABs) are gaining increasing attention for large-scale energy storage systems due to their attractive intrinsic safety and cost-effectiveness. Nonetheless, the future development of AABs is substantially hampered by water-induced self-corrosion processes on the Al anode. In this work, we introduce an amino acid derivative, namely α-Boc-1-formyl-L-tryptophan (NBLT), into a 4 M NaOH electrolyte to construct a unique layer that can effectively regulate the surface microstructure of the Al anode.

View Article and Find Full Text PDF

Numerous organic electrolytes additives have been reported to improve Zn anode performance in aqueous Zn metal batteries (AZMBs). However, the modification mechanism needs to be further revealed in consideration of different environments for electrolytes and electrodes during the charge-discharge process. Herein, sulfur-containing zwitter-molecule (methionine, Met) is used as an additive for ZnSO electrolytes.

View Article and Find Full Text PDF

While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they're computationally demanding due to rare transitions between biologically relevant equilibrium states.

View Article and Find Full Text PDF

Attaining a high energy density that aligns with practical application requirements is a crucial indicator in the advancement of supercapacitors. In this paper, a hybrid hierarchical electrode structure of N-doped carbon nanotube (NCNT) spheres encapsulated with NiCo-Se nanoparticles (NPs) and coated with nickel-cobalt layered double hydroxide (NiCo-LDH) multilayer nanosheets was successfully synthesized on a nickel foam (NF) substrate. The self-supporting strategy enables nickel-cobalt Prussian blue analogues (Ni-Co PBAs) to be directly attached to the NF surface, which results in fluffy NCNTs with a high length-diameter ratio and considerable yield and greatly enhances the conductivity of the electrode material.

View Article and Find Full Text PDF

Rationale And Objectives: Neoadjuvant chemotherapy (NAC) is the most crucial prognostic factor for osteosarcoma (OS), it significantly prolongs progression-free survival and improves the quality of life. This study aims to develop a deep learning radiomics (DLR) model to accurately predict the response to NAC in patients diagnosed with OS using preoperative MR images.

Methods: We reviewed axial T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted (T1CE) of 106 patients pathologically confirmed as OS.

View Article and Find Full Text PDF

Background: Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively.

View Article and Find Full Text PDF

Transition metal sulfides are widely regarded as the most promising electrode materials for supercapacitors. Herein, we utilized a straightforward electrodeposition method to prepare an iron-cobalt bimetallic sulfide nanosheet-assembled nanosphere on nickel foam (FeCoS/NF). The synergistic effect between bimetals and the unique three-dimensional structure significantly improved its capacitive performance.

View Article and Find Full Text PDF

This study evaluated the effects of ultraviolet (UV) photolysis combined with electrochemical oxidation on sulfonamides (SAs) as well as its treated effluent on the bacterial community in surface water. In terms of degradation rate, the best anode material for electrochemical oxidation was Ti/RuO-IrO, which had the highest degradation kinetic constant compared to Ti/TaO-IrO and Ti/Pt. Experiments showed the highest degradation rate of SAs at 8.

View Article and Find Full Text PDF

The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS , the scalable preparation of inexpensive MoS @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS /C in previous work. More importantly, MoS @CN electrode is endowed with impressive rate capability even at 5 A g , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS materials.

View Article and Find Full Text PDF

Electrode materials play a crucial role in the electrochemical performance of supercapacitors (SCs). In recent years, 1T-MoS and MXene have been extensively studied as potential electrode materials. However, 1T-MoS suffers from the metastable property, rigorous synthesis process, and nanosheet restacking issue, while the specific capacitance of MXene is restricted, limiting their supercapacitor performance.

View Article and Find Full Text PDF

Background: The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied.

Methods: In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours.

View Article and Find Full Text PDF

Molybdenum trioxide (MoO) is emerging as a hugely competitive cathode material for aqueous zinc ion batteries (ZIBs) for its high theoretical capacity and electrochemical activity. Nevertheless, owing to its undesirable electronic transport capability and poor structural stability, the practical capacity and cycling performance of MoO are yet unsatisfactory, which greatly blocks its commercial use. In this work, we report an effective approach to first synthesise nanosized MoO materials to provide more active specific surface areas, while improving the capacity and cycle life of MoO by introducing low valence Mo and coated polypyrrole (PPy).

View Article and Find Full Text PDF
Article Synopsis
  • EE-Explorer is an AI system designed to triage eye emergencies and assist with primary diagnosis using metadata and images taken from smartphones.
  • It was developed through a validation study involving data from over 4,000 patients and was tested across various hospitals to assess its accuracy in classifying urgency levels and diagnosing conditions.
  • The results demonstrated high accuracy, outperforming human triage nurses, and indicated strong performance in both triage and diagnostic capabilities, suggesting its potential to improve access to care for patients with eye emergencies.
View Article and Find Full Text PDF

Ferroptosis is an iron-dependent cell death caused by the accumulation of lipid peroxidation. The glutathione peroxidase 4 (GPX4) is an antioxidative enzyme and a major regulator of ferroptosis. Targeting GPX4 has become a promising strategy for cancer therapy.

View Article and Find Full Text PDF

Screening a green corrosion inhibitor that can prevent Al anode corrosion and enhance the battery performance is highly significant for developing next-generation Al-air batteries. This work explores the non-toxic, environmentally safe, and nitrogen-rich amino acid derivative, (α)-Boc-l-tryptophan (BCTO), as a green corrosion inhibitor for Al anodes. Our results confirm that BCTO has an excellent corrosion inhibition effect for the Al-5052 alloy in 4 M NaOH solution.

View Article and Find Full Text PDF