Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla.
View Article and Find Full Text PDFIntrathymic lipid-laden multilocular cells (LLMC) are known to express pro-inflammatory factors that might regulate functional activity of the thymus. However, the phenotype of age-associated intrathymic LLMC is still controversial. In this study, we evaluated LLMC density in the aging thymus and better characterized their distribution, ultrastructure and phenotype.
View Article and Find Full Text PDFThymic epithelial cells (TECs), derived from polarized two-dimensional (2D) oriented endodermal cells, are distinguished from other epithelial cells by their unique three-dimensional (3D) phenotype. However, some polarized epithelial cells remain present in the normal thymus, forming thymic cysts at the cortico-medullary junction. Here, we analyse the dynamics, origin and phenotype of such thymic cysts.
View Article and Find Full Text PDFThe development and maintenance of thymic microenvironments depends on sustained crosstalk signals derived from developing thymocytes. However, the molecular basis for the initial phase in the lymphoid dependent development of thymic epithelial cells (TECs) remains unclear. Here we show that similarly to regular thymocytes, developing B cells enforced to express the Notch ligand Delta-like-1 (DLL1) efficiently induce the non-polarized, three-dimensional (3D) meshwork architecture of cortical TECs in fetal thymic organ culture.
View Article and Find Full Text PDF