Publications by authors named "W el-Khoury"

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) is a disease caused by inflammation and dysfunction in blood vessel cells, leading to changes in the lungs' blood vessels.
  • The study highlights the role of the protein IFI16 in promoting inflammation in these endothelial cells, especially when triggered by the inflammatory molecule IL-1b.
  • Additionally, the research suggests that changes in m6A modification of IFI16 may serve as a potential biomarker for identifying PAH in patients, as increased m6A levels were found in their blood cells compared to healthy controls.
View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a progressive disease driven by endothelial cell inflammation and dysfunction, resulting in the pathological remodeling of the pulmonary vasculature. Innate immune activation has been linked to PAH development; however, the regulation, propagation, and reversibility of the induction of inflammation in PAH is poorly understood. Here, we demonstrate a role for interferon inducible protein 16 (IFI16), an innate immune sensor, as a modulator of endothelial inflammation in pulmonary hypertension, utilizing human pulmonary artery endothelial cells (PAECs).

View Article and Find Full Text PDF
Article Synopsis
  • Vascular inflammation plays a key role in regulating the behavior of endothelial cells, which is especially significant in pulmonary arterial hypertension (PAH), showing complex connections to lysosomal activity and cholesterol metabolism.
  • Research identified that the nuclear receptor coactivator 7 (NCOA7) helps maintain lysosomal function and limits inflammation in endothelial cells; when NCOA7 is deficient, it leads to inflammation and worsened PAH symptoms.
  • A genetic variant in NCOA7 was linked to PAH severity and mortality, while a computationally designed drug that activates NCOA7 showed potential in reversing PAH symptoms in mice, highlighting a new therapeutic approach.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores how hypoxia affects blood vessel behavior in pulmonary arterial hypertension (PAH) through a genetic and epigenetic mechanism involving HIF-2α.
  • HIF-2α enhances the expression of certain genes and long noncoding RNAs that contribute to increased vascular dysfunction, creating a feedback loop that further boosts HIF-2α activity.
  • A specific genetic variant (rs73184087) is linked to an increased risk of PAH; interventions that either inhibit this pathway or reduce HIF-2α levels showed protective effects against the disease in animal models.
View Article and Find Full Text PDF