In the past decade, deep learning algorithms have surpassed the performance of many conventional image segmentation pipelines. Powerful models are now available for segmenting cells and nuclei in diverse 2D image types, but segmentation in 3D cell systems remains challenging due to the high cell density, the heterogenous resolution and contrast across the image volume, and the difficulty in generating reliable and sufficient ground truth data for model training. Reasoning that most image processing applications rely on nuclear segmentation but do not necessarily require an accurate delineation of their shapes, we implemented Proximity Adjusted Centroid MAPping (PAC-MAP), a 3D U-net based method that predicts the position of nuclear centroids and their proximity to other nuclei.
View Article and Find Full Text PDFModern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput.
View Article and Find Full Text PDFLancet Gastroenterol Hepatol
December 2024
There is growing interest in the potential exploitation of the gut microbiome as a diagnostic tool in medicine, but evidence supporting its clinical usefulness is scarce. An increasing number of commercial providers offer direct-to-consumer microbiome diagnostic tests without any consensus on their regulation or any proven value in clinical practice, which could result in considerable waste of individual and health-care resources and potential drawbacks in the clinical management of patients. We convened an international multidisciplinary expert panel to standardise best practices of microbiome testing for clinical implementation, including recommendations on general principles and minimum requirements for their provision, indications, pre-testing protocols, method of analyses, reporting of results, and potential clinical value.
View Article and Find Full Text PDFState-of-the-art computational methods combined with common idealized structural models provide an incomplete understanding of experimental observations on real nanostructures, since manufacturing introduces unavoidable deviations from the design. We propose to close this knowledge gap by using the real structure of a manufactured nanostructure as input in computations to obtain a realistic comparison with measurements on the same nanostructure. We demonstrate this approach on the structure of a real inverse woodpile photonic bandgap crystal made from silicon, as previously obtained by synchrotron X-ray imaging.
View Article and Find Full Text PDFThe water channel aquaporin 4 (AQP4) contributes to water flow and waste removal across the blood-brain barrier and its levels, organization and localization are perturbed in various neurological diseases, including Alzheimer's Disease. This renders AQP4 a potentially valuable therapeutic target. However, most functional assays aimed at identifying modulators of AQP4 function are performed with primary rodent cells and do not consider inter-cellular variations in AQP4 abundance and presentation.
View Article and Find Full Text PDF