Publications by authors named "W Ziolkowski"

Article Synopsis
  • - The study investigated whether swim training can improve copper metabolism in the skeletal muscles of mice with amyotrophic lateral sclerosis (ALS), analyzing the effects at different disease stages.
  • - Results indicated that ALS negatively impacts copper levels and related metabolism proteins in mice, with significant changes observed by the terminal stage of the disease, including a notable decrease in copper importer protein (CTR1) and increases in copper chaperone and exporter proteins.
  • - The findings suggest that while swim training has a moderate effect on copper metabolism, incorporating water exercise into rehabilitation programs could help enhance the quality of life for ALS patients.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls.

View Article and Find Full Text PDF

Swim training has increased the life span of the transgenic animal model of amyotrophic lateral sclerosis (ALS). Conversely, the progress of the disease is associated with the impairment of iron metabolism and insulin signaling. We used transgenic hmSOD1 G93A (ALS model) and non-transgenic mice in the present study.

View Article and Find Full Text PDF

The aim of this paper is to analyse the mechanical properties of butt joints between S355 steel and 6061-T6 aluminium alloy, as well as their relationship to changes in the structure of the material caused by welding. The effect of the tool offset was analysed in particular. For the analysis, tensile tests were carried out using macro- and mini-specimens taken from S355/AA6061-T6 joints and base materials.

View Article and Find Full Text PDF

In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods.

View Article and Find Full Text PDF