Publications by authors named "W Z Cao"

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.

View Article and Find Full Text PDF

Purpose: The aims of this study were to explore the differences in total body water and hydration status among Chinese children aged 6-17 years.

Methods: A cross-sectional study was implemented among children aged 6-17 years in China. The total body water (TBW), intracellular water (ICW), and extracellular water (ECW) were determined by bioelectrical impedance analysis (BIA).

View Article and Find Full Text PDF

Background/objectives: The prevalence of both myopia and obesity is increasing among children and adolescents around the world. We aimed to examine the association between weight status and myopia in Chinese children and adolescents.

Methods: The analysis included 35,108 participants aged 6-17 from a nationwide cross-sectional survey.

View Article and Find Full Text PDF

Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).

View Article and Find Full Text PDF