Publications by authors named "W Wirdateti"

Facial musculature in mammals underlies mastication and nonverbal communicative facial displays. Our understanding of primate facial expression comes primarily from haplorrhines (monkeys and apes), while our understanding of strepsirrhine (lemurs and lorises) facial expression remains incomplete. We examined the facial muscles of six specimens from three Nycticebus species (Nycticebus coucang, Nycticebus javanicus, and Nycticebus menagensis) using traditional dissection methodology and novel three-dimensional facial scanning to produce a detailed facial muscle map, and compared these results to another nocturnal strepsirrhine genus, the greater bushbaby (Otolemur spp.

View Article and Find Full Text PDF

Animals have evolved an array of spectacular weapons, including antlers, forceps, proboscises, stingers, tusks and horns [1]. Weapons can be present in males and females of species needing to defend critical limiting resources, including food (rhinoceros beetles, Trypoxylus) and territories (fang blennies, Meiacanthus) [1-3]. Chemicals, including sprays, ointments and injected venoms, are another defence system used by animals.

View Article and Find Full Text PDF

Slow lorises are enigmatic animal that represent the only venomous primate lineage. Their defensive secretions have received little attention. In this study we determined the full length sequence of the protein secreted by their unique brachial glands.

View Article and Find Full Text PDF

Only a handful of primate taxa use ultrasonic vocalisations (those ≥20 kHz) to communicate. The extent and uses of ultrasonic communication remain poorly understood, potentially ranging from echolocation, advertisement of reproductive status and resource availability, social cohesion, to predator avoidance. Here, using active acoustics whereby the study subjects were observed throughout their activity period, we describe the first purely ultrasonic call from a strepsirrhine primate (family Lorisidae), recorded in a completely wild setting, and hypothesise about its function.

View Article and Find Full Text PDF

Environment and diet are key factors which shape the microbiome of organisms. There is also a disparity between captive and wild animals of the same species, presumably because of the change in diet. Being able to reverse the microbiome to the wild type is thus particularly important for the reintroduction efforts of Critically Endangered animals.

View Article and Find Full Text PDF