Publications by authors named "W Willmann"

Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time.

View Article and Find Full Text PDF

Many interesting applications of magnetic iron oxide nanoparticles (IONPs) have recently been developed based on their magnetic properties and promising catalytic activity. Depending on their intended use, such nanoparticles (NPs) are frequently functionalized with proteins, polymers, or other organic molecules such as meso-2,3-dimercaptosuccinic acid (DMSA) to improve their colloidal stability or biocompatibility. Although the coating strongly affects the colloidal properties and environmental behaviour of NPs, quantitative analysis of the coating is often neglected.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented.

View Article and Find Full Text PDF

Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a hepatotropic, blood-borne virus, but in up to one-third of infections of the transmission route remained unidentified. Viral genome copies of HCV have been identified in several body fluids, however, non-parental transmission upon exposure to contaminated body fluids seems to be rare. Several body fluids, e.

View Article and Find Full Text PDF