Publications by authors named "W Wall"

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

We present accurate and mathematically consistent formulations of a diffuse-interface model for two-phase flow problems involving rapid evaporation. The model addresses challenges including discontinuities in the density field by several orders of magnitude, leading to high velocity and pressure jumps across the liquid-vapor interface, along with dynamically changing interface topologies. To this end, we integrate an incompressible Navier-Stokes solver combined with a conservative level-set formulation and a regularized, i.

View Article and Find Full Text PDF

Purpose: To characterize preprocedural coronary atherosclerotic lesions derived from CCTA and assess their association with in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Materials And Methods: This retrospective cohort-study included patients who underwent CCTA for suspected coronary artery disease, subsequent index angiography including PCI and surveillance angiography within 6-8 months after the index procedure. We performed a plaque analysis of culprit lesions on CCTA using a dedicated plaque analysis software including assessment of the surrounding pericoronary fat attenuation index (FAI) and compared findings between lesions with and without ISR at surveillance angiography after stenting.

View Article and Find Full Text PDF

In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations.

View Article and Find Full Text PDF

Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy.

View Article and Find Full Text PDF