Publications by authors named "W Waegell"

Glucocorticoids (GCs) are efficacious drugs used for treating many inflammatory diseases, but the dose and duration of administration are limited because of severe side effects. We therefore sought to identify an approach to selectively target GCs to inflamed tissue. Previous work identified that anti-tumor necrosis factor (TNF) antibodies that bind to transmembrane TNF undergo internalization; therefore, an anti-TNF antibody-drug conjugate (ADC) would be mechanistically similar, where lysosomal catabolism could release a GC receptor modulator (GRM) payload to dampen immune cell activity.

View Article and Find Full Text PDF

Glucocorticoid receptor modulators (GRM) are the first-line treatment for many immune diseases, but unwanted side effects restrict chronic dosing. However, targeted delivery of a GRM payload via an immunology antibody-drug conjugate (iADC) may deliver significant efficacy at doses that do not lead to unwanted side effects. We initiated our α-TNF-GRM ADC project focusing on identifying the optimal payload and a linker that afforded stable attachment to both the payload and antibody, resulting in the identification of the synthetically accessible maleimide-Gly-Ala-Ala linker.

View Article and Find Full Text PDF

The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human β2-microglobulin transgenic rat model of SpA.

View Article and Find Full Text PDF

Mutations in the Interleukin (IL)-23/IL-23 receptor loci are associated with increased inflammatory bowel disease (IBD) susceptibility, and IL-23 neutralization has shown efficacy in early clinical trials. To better understand how an excess of IL-23 affects the gastrointestinal tract, we investigated chronic systemic IL-23 exposure in healthy wildtype mice. As expected, IL-23 exposure resulted in early activation of intestinal type 3 innate lymphoid cells (ILC3), followed by infiltration of activated RORγt+ T helper cells.

View Article and Find Full Text PDF