Publications by authors named "W W Pai"

Monolayer transition metal dichalcogenide VTe exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation.

View Article and Find Full Text PDF

We identify and manipulate commonly occurring defects in black phosphorus, combining scanning tunneling microscopy experiments with density functional theory calculations. A ubiquitous defect, imaged at negative bias as a bright dumbbell extending over several nanometers, is shown to arise from a substitutional Sn impurity in the second sublayer. Another frequently observed defect type is identified as arising from an interstitial Sn atom; this defect can be switched to a more stable configuration consisting of a Sn substitutional defect + P adatom, by application of an electrical pulse via the STM tip.

View Article and Find Full Text PDF

Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed.

View Article and Find Full Text PDF
Article Synopsis
  • - The linewidth of the field emission resonance (FER) on MoS surfaces can change significantly, by up to ten times, as the electric field increases.
  • - This variation is explained by a concept called quantum trapping, where an electron becomes temporarily trapped in a potential well because of its wave properties after relaxation from a resonance state.
  • - The Pauli exclusion principle plays a role in lengthening the lifetimes of resonant electrons, allowing them to coexist with relaxed electrons and leading to a notably reduced linewidth of about 12 meV.
View Article and Find Full Text PDF

Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe_{2}, which shows a (sqrt[7]×sqrt[3]) CDW in contrast to the (4×4) CDW for the layers in bulk VSe_{2}.

View Article and Find Full Text PDF