Publications by authors named "W Voos"

Deficits of mitochondrial functions have been identified in many human pathologies, in particular in age-related human neurodegenerative diseases. Hence, the molecular causes for mitochondrial dysfunction and potential protection mechanisms have become a major topic in modern cell biology. Apart from defects in their structural integrity, problems in mitochondrial protein biogenesis, including polypeptide transport, folding and assembly to active enzymes, all may result in some degree of functional defects of the organelle.

View Article and Find Full Text PDF

Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78.

View Article and Find Full Text PDF

Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments.

View Article and Find Full Text PDF

The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging.

View Article and Find Full Text PDF

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment.

View Article and Find Full Text PDF