Squeezed states of light have been used extensively to increase the precision of measurements, from the detection of gravitational waves to the search for dark matter. In the optical domain, high levels of vacuum noise squeezing are possible due to the availability of low loss optical components and high-performance squeezers. At microwave frequencies, however, limitations of the squeezing devices and the high insertion loss of microwave components make squeezing vacuum noise an exceptionally difficult task.
View Article and Find Full Text PDFWhen strongly pumped at twice their resonant frequency, nonlinear resonators develop a high-amplitude intracavity field, a phenomenon known as parametric self-oscillations. The boundary over which this instability occurs can be extremely sharp and thereby presents an opportunity for realizing a detector. Here, we operate such a device based on a superconducting microwave resonator whose nonlinearity is engineered from kinetic inductance.
View Article and Find Full Text PDFThe use of superconducting microresonators together with quantum-limited Josephson parametric amplifiers has enhanced the sensitivity of pulsed electron spin resonance (ESR) measurements by more than four orders of magnitude. So far, the microwave resonators and amplifiers have been designed as separate components due to the incompatibility of Josephson junction-based devices with magnetic fields. This has produced complex spectrometers and raised technical barriers toward adoption of the technique.
View Article and Find Full Text PDFUsing a noncontact atomic force microscope, we track and manipulate the position of single electrons confined to atomic structures engineered from silicon dangling bonds on the hydrogen terminated silicon surface. An attractive tip surface interaction mechanically manipulates the equilibrium position of a surface silicon atom, causing rehybridization that stabilizes a negative charge at the dangling bond. This is applied to controllably switch the charge state of individual dangling bonds.
View Article and Find Full Text PDFThe miniaturization of semiconductor devices to scales where small numbers of dopants can control device properties requires the development of new techniques capable of characterizing their dynamics. Investigating single dopants requires sub-nanometer spatial resolution, which motivates the use of scanning tunneling microscopy (STM). However, conventional STM is limited to millisecond temporal resolution.
View Article and Find Full Text PDF